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ABSTRACT 
 
Eye trackers are found on various electronic devices. In this 
paper, we propose to exploit the gaze information acquired 
by an eye tracker for depth estimation. The data collected 
from the eye tracker in a fixation interval are used to estimate 
the depth of a gazed object. The proposed method can be used 
to construct a sparse depth map of an augmented reality space. 
The resulting depth map can be applied to, for example, 
controlling the visual information displayed to the viewer. A 
mathematical model for determining whether two depths in 
the augmented reality space are statistically distinguishable is 
also developed. Experimental results show that the proposed 
method can estimate and distinguish different object depths 
effectively. 
 

Index Terms—Gaze, depth estimation, eye tracker, 
human computer interaction, augmented reality. 
 

1. INTRODUCTION 
 
For decades, exploiting human gaze for 2D graphical user 
interface has been a popular research topic in human 
computer interaction, gaming, and psychology [1]. Recently, 
the rising interest in augmented reality (AR) and virtual 
reality (VR) has further fueled the development of effective 
means for interaction with a 3D visual world. This paper 
investigates the estimation of depth in 3D space using an eye 
tracker. Specifically, the 3D depth of a gazed object with 
respect to the viewer is estimated using the gaze information 
obtained from an eye tracker. 

The eye tracker is considered because it has become a 
popular component of see-through devices to track the eye 
movement of a user and thereby control the presentation of 
images to the user.  In this application scenario, besides 
observing how the user navigates the visual world, the gaze 
information can be utilized to compute the 3D depth of each 
scene point the user looks at during the visual navigation 
journey. A sparse depth map of the attended visual stimuli 
can be thus obtained. A critical step towards this goal is the 
depth estimation of a gazed object. 

We believe that it is possible to address the depth 
estimation problem using gaze information because human 
eyeballs rotate when gazing objects at different depths. 
However, it should be noted that the depth of a gazed object 
in the context of this work is different from the depth of gaze 

at a particular time instant. The difference is due to the fact 
that gaze position, which is measured by the intersection of 
the visual axes of both eyes, varies with time despite the same 
point is gazed at [2], [3].  

In this paper, we propose a depth-from-gaze method 
applicable to typical indoor interactions ranging from 0.65m 
to 2m in depth. The estimation is achieved by modeling the 
effect of temporal variation of gaze as Gaussian noise and by 
processing the gaze data over a fixation time interval. 
Furthermore, a Gaussian model is developed to determine the 
minimal distance between two statistically distinguishable 
depths acquired by an eye tracker. 

 
2. RELATED WORK 

 
2.1. Vergence  
Humans are capable of perceiving the 3D relative depth. 
Although the exact mechanism of human depth perception is 
not yet fully understood, the depth perception models 
developed so far can be classified into two categories: 1) 
special model for near-distance viewing and 2) general model 
for both near- and far-distance viewing [4]. 

Vergence is a near-distance depth perception model that 
describes how the eyeballs rotate inward (outward) when 
gazing at a near (far) object. The inward and outward eye 
movements, respectively, are called convergence and 
divergence. The variation of vergence is smaller when the 
point of gaze is at a relatively far distance [4], [5]. Therefore, 
the minimal distance between two distinguishable depths 
increases as the point of gaze moves away from the viewer. 

On the other hand, vergence does not correspond to the 
exact distance of the object being gazed at. Research has 
shown that the depth of the intersection of visual axes may 
not be equal to the depth of the point of gaze [2]. Furthermore, 
fixation eye-movements may introduce variation to the visual 
axes during fixation [3]. Therefore, it is inappropriate to 
assume that the depth of gaze is equal to the depth of the 
gazed object. 

 
Fig. 1. An application scenario where a sparse depth map is 
obtained from the gaze information generated by an eye tracker. 
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2.2. Eye Trackers and Gaze Estimation 
An eye tracker is a device for measuring eye positions and 
movements. Commercially available 2D eye trackers come in 
the form of desktop or head-mounted devices [6]. For most 
desktop eye trackers, the fiducials to be gazed at are displayed 
on a monitor screen for calibration. For head-mounted eye 
trackers, the fiducials are placed at or moved to various 
positions on a 2D plane in space. Both types of eye trackers 
use the eye images captured in the calibration stage to 
estimate the 2D gaze in the evaluation stage. 

3D gaze estimation methods have been developed for 
stereoscopic displays. A method called “parameterized self-
organizing map” employs neural networks to construct a 
function that maps 3D gaze position to 2D on-screen gaze 
position in the calibration stage. The inverse of the function 
is then used for 3D gaze estimation in the evaluation stage [7]. 
Another method enhances gaze estimation by a 3D 
calibration process, which maps coarse estimations to gaze 
positions at a finer granularity [8]. 

3D gaze estimation methods have also been developed 
for applications in a real-world environment. A method using 
an eye tracker together with a body tracking system 
demonstrates that it is possible to visualize gaze positions 
with 3D scan paths and attention volumes [9]. Methods such 
as spatial triangulation or parameterized self-organizing map 
[7] that work for stereoscopic display can also be applied to 
real-world environment to achieve 3D gaze estimation [10], 
[11]; however, additional work is needed to overcome the 
limitations on working distance and portability.  
 

3. PROPOSED METHOD 
 

Unlike the methods discussed in Sec. 2 that target gaze 
estimation, we focus on the depth estimation of gazed object. 
Note that gaze estimation is an intermediate step of our 
method rather than an entire process. In this section, we 
describe how to obtain reliable gaze information from the eye 
tracker, how this information is used to estimate the depth of 
object, and how to estimate if two objects are distinguishable 
in depth judged from the gaze information. 
3.1. Gaze Information from the Eye Tracker 
We explain our 3D gaze estimation method using an 
illustration of the configuration of a desktop eye tracker 
shown in Fig. 2. For typical 2D gaze estimation shown in (a), 
both the fiducials for calibration and the targets for evaluation 
are displayed on a monitor, and the gaze point is simply at the 

intersection of the visual axes with the monitor screen. For 
3D gaze estimation, the configuration for calibration is still 
the same, but the configuration for evaluation is different 
because the target is no longer on the monitor screen. Imagine 
that the monitor is removed and replaced by a virtual plane, 
as shown in Fig. 2 (b). The visual axes would intersect the 
virtual plane at two points. These are the two points obtained 
from a binocular eye tracker. 

The following derivation holds regardless of which type 
of eye tracker is used. Consider the two intersection points 
described above and denote them by (𝑥#, 𝑦#)  and (𝑥', 𝑦') 
corresponding to left and right eyes, respectively. Let Δ𝑥 =
𝑥' − 𝑥#  and denote the depth of gaze by 𝑑.  By triangular 
similarity, we have 

 𝑑 =
𝛼𝐷/
𝛼 − Δ𝑥

	,	 (1) 

where 𝛼 is the interocular distance and 𝐷/ is the depth of the 
virtual plane. In practice, 𝐷/ is a known control parameter, 
but 𝛼 varies across individuals. For simplicity, however, it is 
common to set 𝛼 = 6.3 cm [8], [10]. A notable property of 
human gaze is that the intersection of visual axes varies 
during fixation despite the same point is gazed at. As a result, 
the depth of gaze obtained from (1) varies with time. 

Estimation of the depth of gaze can be enhanced by 
substituting ∆𝑥2 for ∆𝑥 in (1), where ∆𝑥2 = ∆𝑥 − ∆𝑥34 and 
∆𝑥34 denotes the mean of ∆𝑥’s that are obtained when the 
target is located at depth 𝐷/ . This operation can be 
considered to be a normalization of ∆𝑥 because ideally the 
visual axes would intersect at the virtual plane (∆𝑥 = 0) when 
gazing the target at depth 𝐷/. 
3.2. Depth of Target from Gaze Information 
In this subsection, we describe how the depth of a target is 
obtained by exploiting the relation between 𝑑 and ∆𝑥 in (1). 
The main idea of our method is to calculate the probability of 
a target being at a possible depth, then the depth with the 
highest probability is selected as the final depth estimate. This 
process can be done by using a set of Δ𝑥’s collected over a 
time interval, which can be set to the fixation duration in 
different viewing scenarios. 

We now explain how Δ𝑥’s can be used to estimate the 
depth of the target. Let us denote the set of estimates of the 
depth of gaze obtained from (1) by 𝐷, the probability of a 
target at depth ℎ  given 𝐷  by 𝑃 ℎ 𝐷 , and the set of all 
possible depths of the target by 𝐻. The depth estimate for 
target 𝑍 is obtained by 

 𝑍 = argmax
?∈A

𝑃 ℎ 𝐷 . (2) 

From the Bayes’ theorem, 𝑃 ℎ 𝐷  can be expressed by 

 𝑃 ℎ 𝐷 = 𝑃 𝐷 ℎ
𝑃 ℎ
𝑃 𝐷

. (3) 

Under the common uniform prior assumption (that is, 𝑃 ℎ  
is the same for a different depth) and with 𝑃 𝐷  being a fixed 
normalization factor, we can formulate the depth estimation 
problem as a maximum-likelihood problem, 

 
Fig. 2. Top view of (a) a typical 2D gaze estimation and (b) a 3D 
gaze estimation. 
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 𝑍 = argmax
B∈C

𝑃 𝐷 ℎ . (4) 

Assuming the elements in 𝐷 are i.i.d. yields 

 𝑃 𝐷 ℎ = 𝑃 𝑑 ℎ
D∈3

. (5) 

Since 𝑑 and Δ𝑥 in (1) bear a one-to-one relationship, we can 
rewrite (5) as follows: 

 𝑃 𝐷 ℎ = 𝑃 ∆𝑥D ∆𝑥?
D∈3

, (6) 

where ∆𝑥D and ∆𝑥? denote the lateral distance (Δ𝑥) between 
the intersections of the visual axes with the virtual plane when 
the target is located at 𝑑 and ℎ, respectively. Substituting (6) 
into (4) for 𝑃 𝐷 ℎ  and taking logarithm yield 

 𝑍 = argmax
?∈A

ln 𝑃 ∆𝑥D ∆𝑥?
D∈3

. (7) 

Using a normal distribution with standard deviation 𝜎  to 
approximate 𝑃 ∆𝑥D ∆𝑥? , we rewrite (7) as follows: 

𝑍 ≈ argmax
?∈A

ln
1
2𝜋𝜎

𝑒M	
N
OPQ ∆RSM∆RT Q

D∈3
,  

𝑍 = argmin
?∈A

∆𝑥D − ∆𝑥? O

D∈3
. (8) 

As a result, depth estimation is formulated as a mean squared 
error problem. The depth estimate of the target can be 
obtained by searching for the depth ℎ in 𝐻 that minimizes the 
sum of squared errors with respect to ∆𝑥D. 
3.3. Minimal Distance in Depth 
Consider the case where two objects are 5 cm apart in depth. 
We can easily tell which of them is closer to us when the 
objects are 20 cm away. However, it is hard to do so when 
they are 200 cm away. This phenomenon has to do with the 
fact that the convergent sensitivity of human eyes decreases 
with object distance. In the context of this work, the minimal 
distance between two distinguishable depths increases as the 
point of gaze moves away from the viewer. We propose a 
model to estimate the minimal distance for different depths. 

Consider three independent normal distributions N1, N2, 
and N3 with the same standard deviation 𝜎  but different 
means ∆𝑥N , ∆𝑥O , and ∆𝑥V . Let 𝑓N , 	𝑓O , and 𝑓V  denote their 
probability density functions. Assume that ∆𝑥X  is an 
arithmetic progression and ∆𝑥X < ∆𝑥XZN . Then, the 
probability 𝑃  of an 𝑥  sampled from N2 such that 𝑓O 𝑥 <
𝑓N 𝑥  or 𝑓O 𝑥 < 𝑓V 𝑥  is 

 𝑃 = 2 1 − 𝐹O ∆𝑥O + 𝐼 ∕ 2 , (9) 

where 𝐹O is the cumulative distribution function of 𝑓O and 𝐼 is 
the common difference of ∆𝑥’s. We determine the value of 𝐼 
so that the probability 𝑃 is below a tolerable threshold and 
obtain iteratively a series of ∆𝑥’s given the initial value ∆𝑥_. 
In this way, the minimal distance between distinguishable 
depths is determined by the difference between 𝑑’s, where 
𝑑’s are obtained from ∆𝑥’s using (1). 
 

4. EXPERIMENT 
 
4.1. Apparatus 
The experimental setup is shown in Fig. 3. A chin rest was 
used to fix the head position of each viewer participating in 
the experiment. An EyeLink binocular eye tracker with 
sample rate 1000 Hz was placed at 45 cm away from the 
viewer. A ViewSonic VX912 monitor screen with resolution 
1024×768 was placed at 65 cm away from the viewer in the 
calibration stage. Identical targets were placed at 65, 72, 85, 
106, 138, and 200 cm away from the viewer for evaluation. 
The depths of the targets were determined from (9) with 𝑃 = 
0.05 and 𝜎O = 40 pixels. Our program was implemented in 
MATLAB using the Psychophysics Toolbox [12]. 
4.2. Procedure 
As illustrated in Fig. 3 (a), each viewer was asked to gaze at 
the fiducials displayed on the monitor screen in the 
calibration stage. Then, the monitor was removed after the 
calibration was completed and the viewer was asked to gaze 
at each target for 5 seconds, as show in Fig. 3 (b). At each 
target position, 5000 pairs of 𝑥#, 𝑦#  and 𝑥', 𝑦'  were 
obtained from the eye tracker. Those labeled “saccade” or 
“blink” were removed. Three males and four females were 
recruited to participate in the experiment. Each subject went 
through three trials, each including a calibration and 
evaluation procedure. 
4.3. Results and Discussions 
Results were obtained with H = {65, 72, 85, 106, 138, 200} 
for the seven subjects (denoted by Si, i=1..7), each of them 
went through three trials (denoted by Tj, j=1..3). We show the 
estimated gaze position of two participants in Fig. 4. The 
results for the other participants are similar but omitted from 
the figure due to page limitation. Two important observations 
are made. First, ∆𝑥2 becomes larger as the target is placed 
farther. This proves that the eye tracker, which was originally 
designed for 2D gaze tracking, can be used to obtain the 
vergence information required for 3D gaze estimation. 
Second, the increment of ∆𝑥2 decreases with the target depth. 
For example, we can see that the difference between ∆𝑥2’s 
for the targets at 65 and 85 cm are larger than that for the 
targets at 180 and 200 cm. This result is consistent with our 
earlier statement in Sec. 3 that the minimal distance between 
two distinguishable depths increases as the point of gaze 
moves away from the viewer. 

 
                       (a)                                               (b) 
Fig. 3. Experimental setup for (a) calibration and (b) evaluation. 
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Table 1 shows the depth estimates obtained from the 
results in Fig. 4. For evaluation purpose, the depth estimates 
are classified into different levels coded by color. Note that, 
in some trials (e.g., T3 of S1), the eye tracker misidentified 
nostrils as pupils. Such trials are excluded from the table. 
Three ratings are given to the depth estimates: best estimate, 
second-best estimate, and others. A best estimate means a 
depth estimate 𝑍 is at the ground truth level, a second-best 
estimate means 𝑍 is one depth level off the ground truth (for 
example, the estimate is 72 or 106 for a target at 85), and 
others means 𝑍 is more than one level off the ground truth. 

Three observations are made from the results shown in 
Table 1. First, the depth estimate increases with the target 
depth for most of the trials. That is, the proposed method is 
able to tell the relative depth of a target in different positions. 
The ability to judge relative depth is useful for many 
applications. For example, it allows foreground object to be 
separated from background. Second, the best and the second-
best estimates together account for 97% of the cases, which 
implies that it is feasible that the coarse depth estimate 
obtained from an eye tracker allows us to find the viewer’s 
point of regard. This is useful for applications such as AR and 
makes depth-from-gaze a complementary function of a head-
mounted see-through device for controlling and processing 
the visual information to be displayed to the viewer. Third, 
the quality of depth estimate based on gaze information varies 
with individuals. For example, all depth estimates for Subject 
S1 fall in the best estimate category, but only 67% of the depth 

estimates belong to this category for S4. This may have to do 
with the fact that the amplitude of fixation eye-movement is 
different between individuals, as we can see from the scatter 
diagrams shown in Figs. 4 (a) and (c) that the points for S1 are 
more densely packed than those for S4. Consequently, the 
value of 𝜎 in (9) has to be customized for each individual. 

To show the effectiveness of the proposed method, we 
compare the proposed method against a baseline method that 
outputs the average depth of gaze. Specifically, it uses (1) to 
compute the depth of gaze 𝑑  and averages the resulting 𝑑 
values obtained over a period of time. The average depth 
estimate is then classified into the nearest depth level. From 
the experimental results shown in Table 1, we can see that the 
best and the second-best estimates of the baseline method 
account for only 27% and 24%, respectively, of the cases. 
The results clearly show that the proposed method is more 
accurate than the baseline method. 

To show the importance of customization, we performed 
an additional experiment with 𝜎O = 95 (as opposed to 40 in 
the first experiment) for S1 and S4. The results are show in 
Table 2. We can see that 88% of the depth estimates now fall 
in the best estimate category for S4. (Of course, it is expected 
that the percentage for S1 should remain the same since the 
distance between depth levels is increased). The granularity 
of depth estimation discussed so far is based on the gaze 
information. It is interesting to study further how the actual 
depth perception of a person is related to such granularity. 

5. CONCLUSION 

In this paper, we have demonstrated that gaze information can 
be used for depth estimation. We have also described a model 
to determine the minimal distance between distinguishable 
depths. The proposed method can be integrated into domain-
specific solutions to construct a sparse depth map during the 
visual navigation journey of a viewer. We believe such 3D 
sensing capability is useful for applications to psychology, 
gaming, and human computer interaction. 

         
                            (a)                                                   (b)                                                   (c)                                                   (d) 
Fig. 4. Example experimental results for different target depths coded by color.  The results for Subjects S1 and S4 are shown in (a)–(b) and 
(c)–(d), respectively. (a) and (c) show the scatter diagram of the gaze positions for both eyes, the left branch for (𝑥# , 𝑦#) and the right branch 
for (𝑥', 𝑦'). (b) and (d) show the value of ∆𝑥2 over time (ms). 

Table 1. Evaluation of depth estimates (with 𝜎O= 40 in (9)) 

 

Table 2. Evaluation of depth estimates (with 𝜎O= 95 in (9)) 
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