
Botender: Supporting Communities in Collaboratively Designing
AI Agents through Case-Based Provocations

Tzu-Sheng Kuo
tzushenk@cs.cmu.edu

Carnegie Mellon University
Pittsburgh, PA, USA

Sophia Liu
sophiawliu@berkeley.edu

University of California, Berkeley
Berkeley, CA, USA

Quan Ze Chen
cqz@cs.washington.edu
University of Washington

Seattle, WA, USA

Joseph Seering
seering@kaist.ac.kr

KAIST
Daejeon, Republic of Korea

Amy X. Zhang
axz@cs.uw.edu

University of Washington
Seattle, WA, USA

Haiyi Zhu∗
haiyiz@cs.cmu.edu

Carnegie Mellon University
Pittsburgh, PA, USA

Kenneth Holstein∗
kjholste@cs.cmu.edu

Carnegie Mellon University
Pittsburgh, PA, USA

A user has an idea to

improve the bot’s behavior

while using Discord

PROPOSE

CASE-BASED PROVOCATIONS

ITERATE DEPLOY

Users collaboratively iterate
on the bot’s prompt to

change its behavior

Concrete interaction scenarios generated to support reflection on opportunities to improve the bot’s behavior,

and to surface differing viewpoints about desirable bot behavior within a community

Users vote on whether to
deploy the proposed

change, informed by cases

A user proposes a change to
the bot, then reviews how it

behaves in specific cases

Users review the bot’s
behavior in specific cases

based on the change

Users interact with the
updated bot

Prompt

Trigger:

Action:

When a person uses
swear words.

Remind them to be
kind.

Potential Issue

“swear words” can be ambiguous

 and may depend on context

Case

User:

Bot:

Hey Kevin, you crushed
the project, you badass!

Let's remember to be
kind and supportive.

Figure 1: Botender is a system that supports users in collaboratively proposing, iterating on, and deploying changes to a
community bot powered by LLM-based AI agents. Botender facilitates testing and iterating on the bot’s behavior through
algorithmically generated case-based provocations: interaction scenarios designed to spark user reflection and discussion about
desirable bot behavior. Users can iterate on the bot and make collective deployment decisions based on these cases.

Abstract
AI agents, or bots, serve important roles in online communities.
However, they are often designed by outsiders or a few tech-savvy
members, leading to bots that may not align with the broader com-
munity’s needs. How might communities collectively shape the
behavior of community bots? We present Botender, a system that

∗Co-senior authors contributed equally.

enables communities to collaboratively design LLM-powered bots
without coding. With Botender, community members can directly
propose, iterate on, and deploy custom bot behaviors tailored to
community needs. Botender facilitates testing and iteration on bot
behavior through case-based provocations: interaction scenarios gen-
erated to spark user reflection and discussion around desirable bot
behavior. A validation study found these provocations more useful
than standard test cases for revealing improvement opportunities

ar
X

iv
:2

50
9.

25
49

2v
1

 [
cs

.H
C

]
 2

9
Se

p
20

25

https://orcid.org/0000-0002-1504-7640
https://orcid.org/0009-0008-7746-0749
https://orcid.org/0000-0002-6500-8922
https://orcid.org/0000-0001-7606-4711
https://orcid.org/0000-0001-9462-9835
https://orcid.org/0000-0001-7271-9100
https://orcid.org/0000-0001-6730-922X
https://arxiv.org/abs/2509.25492v1

Kuo et al.

and surfacing disagreements. During a five-day deployment across
six Discord servers, Botender supported communities in tailoring
bot behavior to their specific needs, showcasing the usefulness of
case-based provocations in facilitating collaborative bot design.

CCS Concepts
• Human-centered computing → Collaborative and social
computing systems and tools.

Keywords
collaborative design, AI agents, bots, online communities

1 Introduction
Automated agents, often referred to as “bots” in online communi-
ties, play diverse and important roles across various community
platforms [56]. For example, conversational bots in Discord servers
and Slack workspaces are commonly used to increase user engage-
ment by interacting with users, such as sending welcome messages
[7, 31]. Moderation bots [12, 57], like the Automoderator on Red-
dit [33], are widely adopted to enforce subreddit rules by sending
warnings and removing posts that violate community standards.
Utility-focused bots, such as ClueBot NG on Wikipedia [23, 24],
help maintain the quality of community contributions by reverting
damaging edits to articles [25, 27, 38]. These bots not only per-
form specific task-oriented functions but also act as social actors
in online communities [58], interacting with community members
through conversations or other platform actions [74]. They are
deeply integrated into the sociotechnical infrastructure of online
communities and are vital for their growth, maintenance, and flour-
ishing [23, 56, 58].

However, online communities often rely on third-party bots cre-
ated by outsiders who are not part of the community [31], resulting
in the adoption of bots that do not fully align with their specific
needs and values [31]. This misalignment occurs because third-
party bots typically offer limited customization options [29], and
developers often lack the community-specific knowledge needed
to adequately address tailored requests [44]. As outsiders who typi-
cally leave once a bot is developed, developers are also unable to
assess the bots impact within communities and iteratively update
the bot’s design over time [44]. While some communities have a
few members with the technical skills to build bots, the technical
barrier to participating in bot design has created an unintentional
hierarchy within the community and limits broader community
participation in shaping the bots’ behavior [22]. As a result, this
can lead to undesirable, community-wide consequences that might
have been avoided with greater community input [26].

Recent advances in Large Language Models (LLMs) have signifi-
cantly reduced the technical barriers to bot design [29, 43, 45, 49].
This presents an opportunity to support a more community-driven
approach, where members are empowered to collectively shape the
behavior of bots powered by LLM-based AI agents.1 By viewing
bots as shared community infrastructure, such a community-driven
approach could help ensure their alignment with a community’s

1In this paper, we sometimes use “AI agents” and “bots” interchangeably. We gener-
ally use “bot” for the user-facing application, and “AI agent” when referring to the
underlying implementation of a bot, which may involve one or more AI agents.

collective values and needs, rather than leaving this in the hands
of outsiders or a small group of technical experts. However, sup-
porting communities of non-AI experts in collaboratively designing
LLM-based bots for themselves presents several open challenges.
First, research shows that non-AI experts often focus narrowly on
editing LLM prompts for a single interaction scenario [64], failing
to test and account for unintended bot behavior across a range of
relevant scenarios [72]. Moreover, without a coordinated process,
differing opinions among community members on how bots should
behave can lead to difficulties in achieving consensus and effective
collaboration [19, 62]. Finally, to support wider community partici-
pation, as emphasized in past studies [38], this design process has
to be tightly integrated into existing community platforms. These
challenges highlight a clear research gap in supporting the partici-
patory design of AI agents within community contexts [31, 44, 58].

In this work, we present Botender, a system that enables online
communities to collaboratively design and tend to their bots over
time. As illustrated in Figure 1, Botender enables users to collaborate
on (1) proposing desired changes to the bot’s behavior, (2) iterating
on the design of prompt-based bot instructions to operationalize
desired changes, through collaborative editing and testing, and
(3) deploying changes once users reach some level of consensus
on its readiness. Botender supports this iterative, collaborative
approach to prompt design through algorithmically generated case-
based provocations. These are concrete cases that illustrate how
the bot would behave in concrete interaction scenarios, selected
to (1) provoke users to reflect on potential gaps between desired
bot behavior and the behavior yielded by a given prompt, and
(2) reveal potential sources of disagreement about desirable bot
behavior within the community. These provocations are designed
to support iterative and collaborative prompt design by highlighting
interaction scenarios that users may not initially consider. Finally,
Botender is designed to be deeply integrated within community
platforms to reduce barriers to participation and encourage broader
community collaboration in bot design.

We first validated Botender’s case-based provocation approach
through an online experiment and then studied how communities
use Botender in practice through a multi-day field study. The vali-
dation study focused on evaluating the effectiveness of Botender’s
case-based provocation algorithm. The results suggest that, com-
pared to a generic test case generation approach, participants found
that Botender’s case-based provocations revealed more opportuni-
ties to improve the bot, and had greater potential to surface differing
views about desired bot behavior among community members. The
field study aimed to understand how communities use Botender
by deploying the system in six real-world Discord communities
over a period of five days. During this period, Botender supported
participants in tailoring bot behavior to meet the unique needs and
norms of their own communities, showcasing the usefulness of
case-based provocations in facilitating collaborative bot design.

Overall, this work contributes Botender, a system that supports
communities in collaboratively designing community bots through
case-based provocations. Building on findings from an algorithm
validation study and a five-day field deployment, we discuss oppor-
tunities for future HCI research to better support community-driven
bot design.

Botender: Supporting Communities in Collaboratively Designing AI Agents through Case-Based Provocations

2 Related Work
The study of bots in community contexts has been a major focus
in HCI research [56]. In this section, we first discuss the critical
roles bots play in communities and the opportunity to support more
collaborative, community-driven approaches to bot design. We then
review existing work on supporting end users in designing bots,
with an emphasis on recent efforts involving LLM-based agents.
Finally, we discuss past work on the use of concrete cases to support
iterative and collaborative design.

2.1 The Roles of Bots in Online Communities
Bots serve a variety of important roles across different community
platforms [56]. Bots in socially-focused communities, such as Dis-
cord servers, usually take on more socially-oriented roles [59], while
in professional groups like Slack workspaces, they are typically de-
signed to perform task-oriented functions [5]. Research literature of-
ten refers to bots that interact with multiple users simultaneously as
multi-party or polyadic bots [58, 76]. This contrasts with dyadic bots,
which primarily engage in one-on-one interactions. Prior research
has established taxonomies that categorize the types of content
polyadic bots provide to user communities [44, 56]. For example,
Seering et al. classify bot content into five categories [56]: sharing
information (e.g., WikiBot linking to Wikipedia articles2), sending
moderation warnings (e.g., Reddit’s Automoderator3), facilitating
user engagement (e.g., MEE6 on Discord welcoming newcomers4),
promoting community-approved advertisements (e.g., Nightbot on
Twitch advertising streamers’ merchandise5), and running mini-
games (e.g., Mudae on Discord for anime character collection6).
Communities typically search for existing bots that roughly meet
their needs [31], while HCI researchers have developed a variety
of unique bots with specialized roles and functions to address gaps
not covered by existing options [7, 34, 43, 55, 57, 73].

While online communities generally appreciate the wide range
of third-party options available on the market [31], this abundance
also creates significant barriers, especially for those without tech-
nical backgrounds, when it comes to selecting the “right” bot for
their communities [24, 33, 60]. Since communities often rely on
third-party bots created by outsiders who are not part of the com-
munity, they frequently end up adopting bots that do not fully align
with their specific needs and values, even if these bots provide
some customization options [31]. As a result, some communities
turn to external developers to create custom-tailored bots. How-
ever, a study of over two thousand requests on /r/requestabot, a
subreddit connecting bot requesters with developers, shows that
these external developers still struggle to fully understand the re-
quests due to a lack of community-specific knowledge [44]. In the
same vein, without access to the actual community context and
community members’ feedback, external developers struggle to
iteratively design a bot’s technical functionality and assess its so-
cial consequences in communities [44]. While some communities
do have members with both the technical skills to build bots and
insider knowledge of the community’s needs, the technical barrier
2https://www.wikibot.de
3https://www.reddit.com/wiki/automoderator
4https://mee6.xyz
5https://nightbot.tv
6https://mudae.net

to participating in bot design significantly limits broader commu-
nity participation in shaping the bots’ behavior, which can result
in undesirable, community-level consequences that might have
been avoided with greater community input [22, 36]. For example,
bots created by technically inclined Wikipedia patrollers to revert
potential vandalism have unintentionally discouraged new con-
tributors, undermining efforts to retain them [26]. Overall, these
challenges emphasize the need for research into tools and processes
that support more participatory approaches to bot design, allowing
communities to collaboratively design bots that better meet their
collective needs and values [31, 44, 58].

2.2 Supporting End-Users in Prompt Design
HCI research has a rich history of empowering end-users without
technical skills to design AI systems tailored to their specific needs
[18]. Early work on interactive machine learning (iML) andmachine
teaching develop tools and processes for individual, non-technical
users to design traditional ML models [2], often for classification
tasks [9, 39]. Some of this work has specifically focused on support-
ing the collaborative design of ML models [28, 66]. These efforts
have focused mainly on supporting end-users in collecting more
diverse datasets to train more robust classification models.

Recent advances in large language models (LLMs) have signifi-
cantly lowered the technical barriers to designing AI systems capa-
ble of more complex tasks [65], such as AI chatbots. This presents
an opportunity for communities to design their own LLM-based
bots by writing prompts in natural language, without the need for
coding. However, crafting effective prompts remains a challenging
and unintuitive task for end-users [72]. From writing prompts from
scratch and iterating on them to assess their downstream impact,
prior studies have identified several failure points in prompt de-
sign [71]. For example, a frequently encountered challenge is that
non-AI experts often focus on iterating on their prompts for a spe-
cific interaction scenario they have in mind, without considering
how these iterations might affect other scenarios [64]. As a result,
prompt iterations can unintentionally worsen outcomes for scenar-
ios previously considered but not revisited, or for relevant scenarios
that users had not even considered [72]. Insufficient consideration
of how a bot might behave across diverse interaction scenarios can
lead to prompts that are overly ambiguous, making it difficult for
LLMs to distinguish between meaningfully different scenarios [8].
On the other end of the spectrum, this can also lead to prompts
that are worded in a way that is overfit to a specific scenario, so
that the LLM is only able to handle a narrow set of interaction sce-
narios [64]. Finally, this can lead to prompts that cause unintended
downstream consequences in interaction scenarios a user had not
considered [68, 72].

Prior work has explored a range of ways to support non-technical
end-users in prompt design [4, 45, 46, 49, 70], with some tools
specifically created to address the aforementioned challenges. For
example, to help address common pitfalls like writing overly am-
biguous prompts, prior work creates a prompt coach that directly
asks novice users high-level questions for the user to reflect on [8],
such as “Is your prompt detailed enough?”. Other work provides
users with direct recommendations on how they might edit their
prompts to avoid potential undesirable social consequences [53, 54].

https://www.wikibot.de
https://www.reddit.com/wiki/automoderator
https://mee6.xyz
https://nightbot.tv
https://mudae.net

Kuo et al.

Meanwhile, work such as Wordflow [67], PromptSource [6], and
FlowGPT [41] leverage the wisdom of the crowd by enabling in-
dividual users to upload their prompts to a shared repository and
download prompts from others, helping users address scenarios
they might not have considered on their own. However, since these
methods are primarily intended for individuals to create personal-
ized prompts rather than enabling groups to collaboratively develop
prompts they use and rely on together, they do not facilitate direct
collaboration on prompt design.

Enabling groups to collaboratively design prompts for shared
LLMs or AI agents remains an underexplored area of research [29,
30]. Prior work such as PromptHive [50] and CoPrompt [20] has
developed specialized interfaces that enable domain experts to col-
laboratively design prompts for their specific needs. For example,
PromptHive allows mathematics educators to load homework prob-
lems, write prompts to generate homework hints, and share these
prompts with colleagues via a shared library, where others can
download, reuse, and refine them [50]. CoPrompt enables program-
mers to share prompts with collaborators and request prompts
directly within the programming IDE [20]. In contrast to these
approaches, which primarily focus on supporting prompt sharing,
Botender is aimed at facilitating the collaborative design process
itself through the use of concrete case-based provocations, as we
will describe later. More closely related to our context, Koala is an
LLM-based chatbot that participates in group discussions on Slack
and allows participants to adjust four pre-defined settings via radio
buttons to customize high-level aspects of the bot’s behavior, such
as its level of proactiveness (high, medium, or low) [29]. However,
this work does not enable groups to collaboratively author prompts
to specify desired bot behavior in detail. This limits communities’
ability to customize bots to meet their specific needs.

Building on prior work, Botender aims to support communities
in directly collaborating on iterative prompt design through the use
of case-based provocations. These provocations are concrete inter-
action scenarios generated to support reflection on opportunities
to improve the bot’s behavior, and to surface differing viewpoints
about desirable bot behavior within a community. Most closely
related to this concept is a feature in the Gensors system, which
automatically generates “edge cases” to help users stress test vi-
sual sensing models in situations they might not have considered,
to help them to identify unanticipated failure modes [42]. In con-
trast to Gensors’ edge cases, which help individual users debug
visual sensors, Botender’s case-based provocations are designed to
promote collective reflection on bot behavior across diverse social
interaction scenarios—tailored to highlight concrete consequences
of known pitfalls in novice prompt design. Botender uses these
concrete cases as common ground to facilitate collaborative prompt
design. For example, as discussed in Section 4, by voting on cases
users can discover where their expectations of bot behavior may
differ. The use of cases as common ground in Botender is inspired
by their documented success in supporting iterative, collaborative
design in other contexts, as discussed in the next subsection.

2.3 Using Cases to Support Reflection in
Collaborative Design Processes

Cases have served as a medium for design and deliberation across
many fields [1]. For example, in public policy, concrete cases il-
lustrating how people would be affected by a policy are used as
common ground for deliberation and to drive policy changes [17,
37, 40, 69]. In the legal context, strategic litigation involves de-
liberately choosing cases to challenge existing laws, raise public
awareness, and promote legal reform [35]. In HCI research, studies
have shown that using concrete scenarios, whether simulated or
realistic, helps facilitate the iteration of content moderation rules
within online communities [10, 27, 48]. Across all these contexts,
public policy, law, and moderation rules, concrete cases provide a
valuable common ground for discussion and for iterating on the
high-level, abstract frameworks that govern human behavior.

In the context of LLM-based AI agent design, the framework that
governs an agent’s behavior is its prompts. This parallel motivates
us to explore how supporting collaborative prompt design can ben-
efit from approaches in other domains, such as public policy, where
concrete cases are used to facilitate deliberation and collaborative
policy design. For example, PolicyCraft is a system that supports
communities in collaboratively proposing, critiquing, and revis-
ing regulatory policies through discussion and voting on concrete
cases [37]. These cases present specific, hypothetical actions by
community actors (e.g., community members, businesses, govern-
ment entities) and allow others to vote on and discuss whether they
believe such actions should be permitted in their community. The
community then revises its regulatory policies through this collec-
tive discussion and consensus. In this work, we explore whether a
similar case-based approach can facilitate the collaborative design
of AI agent behavior, enabling community members to collectively
reflect upon and discuss how they would want a community bot
to behave. In contrast to PolicyCraft’s focus on manually-written
cases by community members, Botender explores the idea of au-
tomatically, dynamically generated case-based provocations [13]
that support communities in identifying areas of disagreement
and opportunities for bot improvement throughout an iterative,
collaborative design process.

3 Design Goals
Based on a review of prior work highlighting the importance of
community-driven approaches to AI agent design, common pitfalls
novices encounter when designing agent prompts, and the potential
benefits of case-based support, we synthesized the following four
design goals for systems that aim to support the collaborative design
of AI agents in community settings.

D1. The system should facilitate a coordinated process for
agent design that supports effective collaboration and
enables meaningful collective action. Even within a
community that shares broad norms and values, individual
members may hold differing views on how an ideal agent
should behave and how to design it accordingly [10, 19].
The system should facilitate identifying potential sources
of disagreements, enable community members to discuss
their ideas, and support collective decision-making through

Botender: Supporting Communities in Collaboratively Designing AI Agents through Case-Based Provocations

a process perceived as legitimate by the community [37, 52,
61].

D2. The system should encourage users to assess the broader
impact of their design ideas to support iterative pro-
totyping. Prior research shows that when designing AI
agents, non-AI experts often focus narrowly on refining
the agent’s behavior in a single scenario, overlooking the
broader impact of their prompt designs across a variety
of interaction scenarios [64, 72]. To address this, systems
should support users in considering how their design may
affect a wider range of cases they may not have initially
anticipated, to inform design iteration.

D3. The system should support regression testing to help
users prevent the reintroduction of previously re-
solved issues during iterative agent design. Prior re-
search also shows that non-AI experts often overlook how
later design changes can unintentionally reintroduce un-
desirable agent behaviors they had previously addressed
[72]. To mitigate this, the system should support regression
testing—a practice from software engineering that ensures
new codes do not break existing functionality [14, 15, 51].
In the context of collaborative AI agent design, this involves
re-running the agent in previously resolved scenarios af-
ter making design changes to ensure it still behaves as the
community intends.

D4. The system should be integrated into existing com-
munity platforms to promote broader community
participation. Designing an AI agent within a community
context requires additional effort beyond community mem-
bers’ regular activities. To reduce participation barriers,
a key strategy from past research is to directly integrate
the system into the community platform [25, 32, 38]. This
integration should provide multiple ways for members to
contribute and let them decide how much effort they want
to invest. It should also help direct their attention to the
tasks that would most benefit from community input [38].

4 Botender
Based on these design goals, we developed Botender, a system that
enables the collaborative design of bots in online communities.
While Botender’s system architecture is designed to support the
creation of diverse AI agents across different community platforms,
in this paper, we present the first version of Botender, which sup-
ports the design of single-turn, LLM-based conversational bots
powered by AI agents for Discord servers.7 In the following subsec-
tions, we first walk through Botender’s user interaction workflow,
which enables users to collaboratively design their bot by propos-
ing, iterating on, and deploying tasks for the bot to perform within
their community platform. We then describe Botender’s case-based
provocation algorithm, which generates provocative test cases to
encourage user reflection on bot design during the iteration process.
Next, we detail the underlying system architecture that supports
Botender’s user interaction workflow. Throughout the section, we

7In this initial version, the AI agents process one user message at a time and gener-
ate an appropriate response when needed. In the Discussion (Section 7), we outline
specific future directions to expand support for designing AI agents with additional
functionalities across different community platforms.

connect specific features of Botender’s design to the design goals
outlined in the previous section, denoted as D1 to D4. Finally, we
conclude with implementation details.

4.1 Proposing Desired Changes to Bot Behavior
To propose changes to the bot’s behavior, users can open Botender’s
web interface directly from Discord.8 Users may choose to initiate
a proposal from the web interface, based on opportunities for
bot improvement they notice during their everyday interactions
on Discord. Alternatively, users may initiate a proposal based on
observations they make while testing the bot’s behavior using
the playground feature on Botender’s web interface. Using the
playground, users can freely test the behavior of the current version
of the bot by simulating sending user messages in specific channels
on their server. In the playground, users can also experiment with
potential updates to bot behavior, and can then choose to submit a
specific update as a proposal.

When creating a new proposal, users are asked to enter a title
and a brief, high-level description of their desired changes. They are
also encouraged to include a first attempt at operationalizing the
change by either editing an existing task or creating a new one (see
Figure 2 for an example). As shown in Figure 3, each task consists of
a pair of prompt fields: a trigger and an action. The trigger defines
when the bot should perform the task, while the action specifies
what the bot should do when the task is triggered (Figure 6).9 The
task is also given a brief task name for future reference within the
web interface and Discord, but this name does not affect the bot’s
behavior. As shown in Figure 4, the short name of the triggered
task is displayed to users on Discord each time the bot replies. This
allows users to better pinpoint and propose more precise edits to a
specific task based on their observations of how the bot actually
behaves within their community in accordance with that task.

Once submitted, the proposal is created as a page visible to all
community members, as shown in Figure 2. If the original proposer
has included a specific proposed edit with their proposal, they and
any other visitors to the page are immediately shown a set of test
cases illustrating how the bot would behave across a range of inter-
action scenarios (shown on the right side of Figure 2), and are asked
to review these test cases for unintended or undesirable bot behav-
iors. Each test case shows the channel name where a user message
is sent, the user message itself, the name of the triggered task, and
how the edited bot would reply to the user message. The test cases
are divided into two sections: generated test cases and saved test
cases. Generated test cases are produced by Botender’s case-based
provocation algorithm (presented below in Section 4.4 with the aim
of supporting user reflection on potential opportunities to improve
the proposed edit (D2) and helping to surface disagreements among
community members about whether the bot’s response in a given
scenario is appropriate (D1). The saved test cases section allows the
proposer or other community members to save test cases for later

8It is common for more sophisticated Discord bots to have standalone websites for
users to customize a bot’s settings, rather than performing such customization within
the Discord interface, so this is a familiar interaction for users.
9Following best practices in agentic architectures, although there is just one bot named
Botender from users’ perspective, behind the scenes the bot is powered by multiple
specialized task agents, coordinated by an orchestrator agent. The trigger prompt is
used by the orchestrator, and the action prompt is used by a task agent.

Kuo et al.

Figure 2: Botender’s proposal page. The left navigation bar lets users switch between viewing all active tasks on their Discord
servers, community proposals for desired changes, or experimenting with the bot in the playground without affecting their
server. In the center, users see the proposal’s title, description, and the latest proposed edits to the bot’s tasks, such as adding a
new task in this screenshot. Users can upvote or downvote to indicate their support for or opposition to deploying the latest
edit. The bottom displays a full edit history, allowing users to compare edits with previous versions and the original task. On
the right, test cases help guide collaborative decision-making. At the bottom are test cases automatically generated to provoke
user reflection and discussion around the latest edit. Generated cases are saved if a user chooses to vote on the bot’s response.
At the top, members can review and vote on test cases that have previously been saved by community members. Clicking a test
case opens a pop-up with case details, including how the bot’s responses for that case have changed across edits. Finally, users
can click “enter other cases manually” to open a sheet where they can add custom test cases.

consideration and discussion. When saving a test case—whether
a generated test case or a bot interaction from a user’s manual
testing—the user is asked to thumbs up or thumbs down the test
case to indicate whether they think it is an example of a good or
bad bot response. Other users can subsequently add their own votes
to indicate their own perspectives. If a proposal is created based
on a specific bot interaction the user observed in the playground,
this case is automatically added to the saved test cases when the
proposal is created.

When a community installs Botender on their Discord server, the
system automatically creates a #botender channel. This channel
is primarily used for collaborating on bot design and is accessible
only to admins by default, though permissions can be granted to
other members if desired. When a new proposal is created, the
system sends a notification message to the this Discord channel
and creates a discussion thread linked to that message (D1, D4),
as shown in Figure 4. Users can use this thread to discuss and

coordinate their efforts, as well as follow the thread to receive
notifications about proposal updates.

4.2 Iterating on Bot Behavior
After a proposal has been created, community members can view
the proposal page, including any saved test cases and newly gener-
ated case-based provocations for the latest version of the task. Users
can review these test cases and add their votes on bot responses
in saved test cases. The counters for “good,” “bad,” and “tbd” in
the upper-right corner of a proposal page display the number of
cases that have received a majority of thumbs up, thumbs down, or
equal votes (Figure 2). They provide users with a quick overview
of the community’s collective views on test cases. If users notice
disagreements about desirable bot behavior that they wish to dis-
cuss, they can click the “Discuss” button just above these vote
counters, which brings users directly to the associated discussion
thread for that proposal on Discord.

Botender: Supporting Communities in Collaboratively Designing AI Agents through Case-Based Provocations

Figure 3: After clicking the edit button on the proposal page,
the original static text is replaced by this edit interface. Be-
fore saving edits, users are required to run “Test + Generate”
to see how the bot would behave with their proposed edits.

Any user can make an edit to a task from a given proposal page,
including creating new tasks or editing or removing existing ones.
To do this, users click the “Edit” button next to the current proposed
edit. To test their edits, users click the “Test + Generate” button,
as shown in Figure 3. Botender then re-runs all saved test cases
and displays the updated bot responses based on users’ edits, to
support regression testing (D3). Botender also generates new case-
based provocations based on the user’s edit. Before a user is able
to save their edit, they are asked to review the bot’s behavior in
the presented test cases, and must vote on at least one of these test
cases. This default threshold was chosen to promote user engage-
ment with the test cases before saving and sharing proposed edits,
while avoiding introducing too much friction into the collaborative
editing process. However, the threshold may be customized to meet
individual communities’ needs. If the user notices a potential issue
when reflecting on the test cases, they are encouraged to refine
their edit and test again before saving. Once they are satisfied, they
can save their edits to the proposal.

Once an edit is saved, the system sends a notification to the
proposal’s discussion thread on Discord to encourage people to
review the latest proposed edit (D1, D4), as shown in Figure 4. On
the proposal page, they can then review the latest proposed edit
and corresponding test cases. Users can also view the full edit
history of a proposal, including edits to tasks and any additions
or removals of saved test cases, and can revert changes as needed
(D1). This design mirrors systems such as Wikipedia by making
the edit history transparent [11, 63], which helps coordinate efforts
and ensures accountability among editors.

4.3 Deploying Updates to Bot Behavior
At any point in this process, upon viewing the latest proposed edit
and test cases for a given a proposal, users may choose to vote in

favor of its deployment within their Discord server (D1). By default,
each proposal requires at least three upvotes to be deployable, but
this threshold can be adjusted to fit each community’s needs. Similar
to saving edits, the system requires users to give at least one thumbs
up or down on a saved test case before voting for deployment. As
at other points throughout Botender’s workflow—such as when
creating or editing a proposed bot task—this encourages users to
review how the bot would actually behave based on the proposed
edit before casting their vote, rather than merely reading the edit.

Once a proposed edit reaches the deployment threshold, users
can click the “Deploy” button on the proposal page to deploy
the proposed changes to the live bot on their Discord server. The
system sends notifications to both the proposal discussion thread
and the main #botender channel to inform everyone that the bot’s
tasks have been updated (D1, D4). The proposal is then closed.10

4.4 Case-Based Provocation Algorithm
A key aspect of Botender is its support for collaborative iteration on
bot design through the use of concrete test cases. Drawing inspira-
tion from the use of cases as a medium for collaborative design and
deliberation in various fields (Section 2.3), Botender’s case-based
provocation algorithm is designed to generate cases that encourage
user reflection and discussion about desirable bot behavior, rather
than simply validating expected outcomes. In the context of com-
munity bots, these provocative cases may highlight situations users
may not have considered or instances where community members
may disagree on how the bot should behave.

Botender’s case-based provocation algorithm is designed to gen-
erate three broad types of cases, aimed at surfacing issues commonly
overlooked by non-AI experts when designing LLM prompts, which
can also be sites of disagreement among community members:

• Cases that highlight ambiguities in a prompt: Non-AI
experts oftenwrite LLMprompts containing ambiguous, un-
derspecified phrases [72]. Such phrases can be interpreted
differently by both the LLM and by different people. For
example, the phrase “inappropriate language” in a prompt
leaves substantial room for differing interpretations about
what exactly constitutes inappropriate language. If a user’s
interpretation of the prompt differs from that of the LLM,
the agent may behave in ways that are unexpected to the
user. Similarly, different users may agree on a prompt’s
wording, only to realize that they have different expecta-
tions for how the agent should behave, upon seeing actual
examples of bot behavior in different interaction scenar-
ios. Concrete cases can help reveal such disagreements and
encourage iteration on prompts to make them clearer and
more specific.

• Cases that highlight potential overly narrow wording
in a prompt: Non-AI experts also often write LLM prompts
that focus too narrowly on defining an agent’s behavior for
a single scenario, overlooking the broader impact of their
prompt across a wider range of possible interaction scenar-
ios [64, 72]. For example, a prompt that instructs the agent
to identify a specific list of banned words (as is common

10If users choose not to deploy a proposal, they can close it but still have the option to
reopen and edit it later if needed.

Kuo et al.

1

2
3

5
4

6

Figure 4: The Discord interface, highlighting Botender’s integration with the community platform. (1) By default, Botender
replies "hello" to users who greet it in the #botender channel, as defined by its default “Hello Botender” task. (2) When a new
proposal is created, the system sends a notification to the #botender channel, and (3) creates an associated discussion thread, as
shown on the right, where users can discuss the proposal and receive notifications about saved edit updates. (4) Once a proposal
is deployed, the system notifies the discussion thread, closes the proposal, and (5) and sends a message to the main #botender
channel. (6) The bot will then behave according to the latest deployed edit.

in traditional moderation tools) may overlook how those
words could be used legitimately in some contexts. Such
a prompt may also fail to address the broader goal behind
banning these words by missing related words or phrases
that are not included in the list. Concrete cases covering
a diverse range of relevant scenarios can encourage users
to reflect and discuss how to iterate on an overly narrow
prompt to better achieve their broader goals.

• Cases that reveal potential unintended community-
level consequences of a prompt: Finally, as documented
in prior HCI research, bots deployed in community contexts
can sometimes lead to unintended community-level conse-
quences, despite good intentions [36]. For example, com-
munity bots may inadvertently discourage participation by
enforcing norms too strictly or crowding out opportunities
for meaningful user contribution [26]. Concrete cases can
help users foresee potential unintended downstream con-
sequences and iterate on the prompt before deployment to
prevent them.

To generate these three types of cases to support user reflec-
tion and discussion, Botender’s algorithm uses three separate LLM
pipelines, one for each case type, as shown in Figure 5. Each pipeline

consists of three modules: a detector, a generator, and an evaluator.
The detector identifies specific phrases in the prompt, whether in
the trigger or action prompt of a task, that may be too ambiguous,
overly narrow, or could lead to unintended consequences. Based on
the detected issue, the generator creates a channel name and user
message that aim to concretely illustrate the problem, along with a
reasoning of what the case aims to highlight. However, at this stage
the generator does not yet know how a bot’s will respond to the
message. Therefore, after generating the channel and user message,
these are sent to the bot (specifically, to the orchestrator agent and
task-specific agents as described in Section 4.5) to obtain a response.
The evaluator then reviews the complete case, including the actual
bot response, to determine whether it effectively demonstrates the
identified issue as described by the generator’s reasoning. Only
cases that pass the evaluator are output by each pipeline. Finally,
all cases from the different pipelines are merged into a single pool,
from which a selector module chooses a set of cases that are likely
to be most useful (five in the current implementation) in promoting
user reflection and discussion. Full details of the system prompts
for individual LLM modules within the pipeline are provided in
Appendix A.2.

Botender: Supporting Communities in Collaboratively Designing AI Agents through Case-Based Provocations

bot

reasonings discard if not provocative

reasonings discard if not provocative

reasonings discard if not provocative

ambiguous

phrase

triggered task +

bot response

channel +

user message

provocative

case candidate

overly narrow

phrase

triggered task +

bot response

channel +

user message

provocative

case candidate

provocative

cases

consequential

phrase

triggered task +

bot response

channel +

user message

provocative

case candidate

prompt detector generator evaluator selector

detector generator evaluator

detector generator evaluator

Figure 5: Botender’s case-based provocation algorithm uses three parallel LLM pipelines to generate provocative test cases that
encourage user reflection and discussion on common prompt design pitfalls, including ambiguous language, overly narrow
phrasing, or unintended downstream consequences for the community. Each pipeline includes its own detector, generator,
and evaluator to generate relevant cases. Finally, a selector chooses the most provocative cases from all case candidates. The
prompts for all ten LLM modules, including each pipeline’s detector, generator, and evaluator, as well as the final selector, are
provided in Appendix A.2.

Platform IntegrationCommunity Platform Community AI Agents Botender Web App

Botender Server

Channel

User

Bot

We are running a paid user study.
Consider signing up here!

Please post your study in the
#recruitment channel instead.

Triggered Task: Redirect Ads

orchestrator

agent

task agent 1

name

trigger

action

task agent 2

name

trigger

action

task agent 3

name

trigger

action

ProposalBotender

Tasks

Proposals

Playground

Enter other cases manually

Generated test cases

Saved test casesDescription

...........................

Proposed Edits

...........................

...........................

Edit History

...........................

direct link between discussion threads and proposal pages

event editsevent

action casesaction

event listener

action executor

Figure 6: Botender’s overall system and agent architecture. On the left, platform events are captured by Botender’s always-
running event listener, which translates them into information the agent architecture can understand. The orchestrator agent
assesses each event and determines which, if any, task-specific agent is most relevant. The selected task-specific agent then
generates an action instruction that is executed by Botender’s platform action executor. On the right, Botender’s website serves
as the primary interface for users to collaboratively and iteratively design AI agents. This process generates concrete interaction
scenarios that help guide further design iterations. The website is tightly integrated with the community platform, with each
proposal directly linked to a dedicated discussion thread, encouraging broader community participation and discussion.

4.5 System and Agent Architectures
Figure 6 depicts Botender’s overall system architecture and its
integration with community platforms such as a Discord server.
Behind the scenes, the bot that users interact with is powered
by multiple LLM-based agents, including an orchestrator agent
and several task-specific agents, each corresponding to a task
created by the users. This design alignswith best practices in agentic
architectures [16, 21], allowing each agent to focus on a single task
and thereby enhancing overall transparency, controllability, and
task outcomes [70, 75]. Each task-specific agent includes a name, a
trigger prompt, and an action prompt, which users can edit from
Botender’s web interface.

When the community platform induces an event detected by Bo-
tender’s always-running listener, such as a user sending a message
in a channel, the orchestrator agent assesses whether the event
is relevant to any of the task-specific agents. This assessment is
based on each agent’s trigger prompt. If a specific task is deemed
relevant, the corresponding agent will take the necessary action
according to its action prompt, such as generating a response to
the user’s message. This action is then executed on the community
platform. The complete system prompts for both the orchestrator
agent and the task-specific agents are provided in Appendix A.1.

Kuo et al.

It is worth noting that this system architecture is designed to
support the bot’s functionality beyond the current scope of single-
turn conversations. For example, Botender’s listener can monitor
additional platform events, such as new users joining a server, and
the system can execute a wider range of platform actions, such as
banning users from the server. In the Discussion, we discuss future
directions for expanding the bot’s capabilities (Section 7).

4.6 Implementation Details
Botender is a full-stack, end-to-end system that individual commu-
nities on Discord can set up via an installation link, as is standard
for Discord bots. Botender’s website has a fixed URL where Discord
users can log in with their Discord accounts, but they can only view
and design bots for servers where they are members and where
Botender is installed. Botender is built with SvelteKit and hosted
on Vercel, using shadcn-svelte components styled with Tailwind
CSS on the frontend and Firestore databases on the backend. Since
Vercel is a serverless platform, Botender’s always-on listener for
Discord platform events is hosted separately on Railway. All the AI
agents and LLM modules are powered by OpenAI’s GPT-4.1. The
entire Botender codebase is open source and publicly available on
GitHub.11

5 Validation Study
We first conducted a validation study to understand how well Bo-
tender’s case-based provocation algorithm generates test cases that
support user reflection on desired bot behaviors. In Botender, these
cases are aimed at (1) helping users identify opportunities to im-
prove the bot’s prompt and (2) helping to surface potential dis-
agreements among community members about how the bot should
behave. This validation study focuses on assessing how effectively
Botender’s case-based provocation algorithm achieves these goals.

5.1 Study Procedures
We conducted the validation study through an online survey. Each
participant was randomly assigned to review one of nine pre-
selected bot prompts, which we referred to as bot “instructions” in
the survey to avoid technical jargon. We selected these prompts to
cover a variety of potential pitfalls in prompt design. Each prompt
included both a trigger and an action, consistent with how tasks
are specified in Botender. All prompts used in the validation study
are available in Appendix B.2.

Each participant reviewed a prompt and evaluated two sets of
cases generated based on the following two conditions:

• Botender: Case-Based Provocations: For each prompt,
participants evaluated five cases generated by Botender’s
case-based provocation algorithm, as described in Section 4.

• Baseline: Standard Test Cases: For each prompt, partic-
ipants also evaluated five algorithmically generated test
cases relevant to the prompt but not specifically targeted
to provoke critical reflection. By comparing against this
baseline, we aimed to understand whether and how Boten-
der’s case-based provocations provide value beyond the

11The link has been removed for review.

general benefits of encouraging people to reflect on con-
crete cases. See Appendix B.1 for the algorithm used to
generate baseline cases.

Participants evaluated two sets of cases in random order. For each
case, they rated how strongly they agreed or disagreed with the
following two statements reflecting the goal of Botender’s case-
based provocation algorithm:

• Controversialness: I think people may have differing
opinions on whether the bot’s response in this case is
appropriate.

• Provocativeness: I think this case reveals opportunities
to improve the instructions that were given to the bot.

Participants also provided set-level ratings indicating their agree-
ment with the following two statements and briefly described po-
tential problems they saw with the bot’s prompt, based on the cases
in each set:

• Coverage: This set of cases covers a comprehensive range
of problems with the instruction.

• Diversity: This set of cases covers a diverse range of prob-
lems with the instruction.

Finally, participants selected the set of cases that revealed more
potential problems with the prompt and thus better highlighted
ways to improve the bot. They also briefly justified their choice.

5.2 Recruitment
We recruited 90 participants on Prolific with experience in online
groups or communities (e.g., Discord servers or Slack workspaces)
where Botender is intended to be deployed. Each participant was
compensated $5 USD, and the median survey completion time was
13 minutes. This sample size yielded 10 independent reviews per
prompt and its corresponding cases.

5.3 Validation Study Results
Overall, participants found that Botender’s case-based provo-
cations revealed more opportunities to improve the bot’s
instructions. As shown in Figure 7, most participants selected the
set of cases generated by Botender’s algorithm when asked which
set revealed more opportunities to improve the bot’s instructions,
in a blind comparison. Participants’ justification of their choices12
offered insight into the differences they perceived between the two
sets of cases. For example, several participants noted that Boten-
der’s case-based provocations “surface a wider range of edge cases
that the current instruction doesn’t handle well” (V80, P8). Partici-
pants mentioned that these cases “are more vague and difficult for
the bot to interpret” (V79, P1), “show tricky situations the bot’s in-
structions don’t cover” (V59, P7), and “highlight unclear criteria and
over-triggering, thus better exposing instruction weaknesses” (V62,
P2). Meanwhile, they found the standard test cases to be “more cut
and dry” (V4, P7), offering either “obvious examples of red flags to
the bot” (V19, P1) or cases that “shows the bot doing its job correctly”
(V72, P2).

12We denote participant IDs starting with V and the prompt a participant reviewed
starting with P—for example, “(V79, P1)”. All prompts and cases participants reviewed
can be found in Appendix B.2.

Botender: Supporting Communities in Collaboratively Designing AI Agents through Case-Based Provocations

17

58

15

0

20

40

60

Baseline No Difference Botender

C
ou

nt

Figure 7: The number of participants who reported that the
sets of cases generated by the baseline vs. Botender’s case-
based provocation algorithm were more provocative (i.e., re-
vealed more opportunities to improve the bot’s instructions).

After reviewing Botender’s case-based provocations, participants
identified a range of opportunities to improve the bot’s instructions,
including concerns about potential unintended community-level
consequences of the bot’s responses, such as making users “feel
unimportant, unheard, and excluded” (V51, P4), or noted situations
where “the bot is too direct in question[ing] the user and it comes
across as arrogant” (V23, P7). By contrast, after reviewing cases
generated by the baseline, participants found that the set “covers
cases where the bot should respond, which it does” (V45, P5), or that
the bot “answered but just needed to shorten them or make them more
to the point” (V27, P4). Some participants observed that “[Botender’s]
set had many more areas for improvement” (V31, P5), or found the
baseline “showed no noticeable errors or deviations, and it responded
as everyone would expect” (V87, P3). Overall, participants found that
Botender’s case-based provocations “[hit] deeper problems” (V90,
P7).

The finer-grained ratings participants provided at the case and
set levels align with these interpretations. As shown in Figure
8, at the case level, participants gave significantly higher ratings
(𝑝 < 0.001) for both provocativeness (the extent to which the case
reveals opportunities to improve the bot’s instructions) and contro-
versialness (the extent to which they thought people might hold dif-
fering opinions about the appropriateness of bot behavior in a given
case). At the set level, participants also gave significantly higher
ratings (𝑝 < 0.01) for both the coverage and diversity of Botender’s
case-based provocations. The effect size is significant but small at
the individual case level—0.6 on provocativeness (3.5 for baseline
and 4.1 for Botender) and 0.7 on controversialness (3.2 for baseline
and 3.9 for Botender), likely due to variation across individual cases.
However, at the aggregate set level, people overwhelmingly chose
the Botender condition. Taken together, participants’ judgments
of provocativeness at the set level (Figure 7) versus at the individ-
ual case level (Figure 8) may indicate that participants found the

case-based provocations most provocative when presented as a set,
rather than in isolation.

Overall, these results validate that Botender’s case-based provo-
cation algorithm generates sets of test cases that can better support
user reflection on opportunities to improve the bot’s instructions.
This is further supported through findings from our field study,
reported in the next section, where participants made heavy use of
case-based provocations to collaboratively iterate on their prompts.

6 Field Study
To understand how people use Botender as an end-to-end system
for collaborative AI agent design, we conducted a field study in real-
world Discord communities. On Discord, each server is an online
community where individuals with shared interests connect and
interact. These interests range from casual hobbies like gaming and
anime to professional topics such as programming or specialized
spaces for customer service [3]. Our goal in this field study was
to understand how diverse Discord communities use Botender to
collaboratively design and customize bots for their servers.

6.1 Study Procedures
The field study lasted five days for each group of participants, with
each group consisting of about five people from the same Discord
servers who knew each other well. All participants were active
community members or admins in their servers, making them ideal
candidates to design their own community bots using Botender.

The study began with a synchronous onboarding session, where
participants received guidance on how to use Botender and had
the chance to try the system in a dedicated onboarding server. We
also recorded a comprehensive system walkthrough for a few par-
ticipants who were unable to attend the group onboarding session.
After onboarding, participants installed Botender on their own Dis-
cord server and selected the start date for the five-day study period.
We set two minimum participation requirements for the study. First,
each participant needed to create or edit at least one proposal per
day. Secondly, as a group, they were required to deploy at least
three tasks tailored to their community’s specific needs, norms,
and values by the end of the study. We kept the participation re-
quirements minimal to provide them with the flexibility to decide
when and how much they want to engage in bot design, while also
ensuring that participants would have ample opportunities for in-
teraction across the field study period (cf. [37, 73]). We encouraged
participants to design tasks that reflected their community’s unique
norms and culture, rather than purely logistical tasks.

Each time participants edited a proposal on the proposal page,
they answered a brief multiple-choice question about their motiva-
tion formaking the edit. By analyzing the frequency of each selected
option, we gained insights into what drives proposal editing. Par-
ticipants could select one or more of the following six options to
indicate that they were making an edit to address:

1. specific saved test cases they saw
2. specific generated test cases they saw
3. specific cases they entered themselves manually
4. general issues that someone else raised
5. general issues they thought of themselves
6. other

Kuo et al.

Figure 8: Participants’ ratings on various aspects of cases generated by Botender’s case-based provocation algorithm and the
baseline algorithm. The figure shows notched box plots, with the notches indicating the medians, and the means and 95%
confidence intervals overlaid on the plots. The results show significant differences for all rated aspects.

At the end of the field study, all participants completed a post-
study survey that included the following five statements. Partici-
pants rated their level of agreement with each statement on a scale
from 1 to 7, where 1 indicates “strongly disagree” and 7 indicates
“strongly agree.” They also provided explanations for their ratings:

1. I find that the bot we designed behaves in a way that re-
flects the specific needs, norms, and culture of our Discord
community.

2. I can easily collaborate with others in bot design using
Botender.

3. I find the test cases helpful in revealing opportunities to
improve the bot.

4. I find the test cases helpful in surfacing situations where
people might have differing opinions about whether the
bot’s response is appropriate.

5. I find the experience of designing the bot with the Botender
system integrates well with my usage of Discord.

Finally, they were asked to suggest features for improvement
or for future versions, and to indicate whether they would like to
continue using Botender in their server after the study.

6.2 Recruitment
We recruited six participant groups via social media, paper flyers,
and word of mouth. These groups represented a diverse array of
Discord communities, ranging from close-knit friend groups and
student organizations to the fan community of an indie band. Each
participant received $100 USD for the field study13, consistent with
compensation provided in previous week-long HCI research (cf.
[38, 73]). Table 1 provides the details about each participant group.14

13During the study, other members of each server who were not participants did not
use Botender to design bots.
14In the field study results, participant IDs are indicated with an S, and the groups
they belong to are indicated with a G.

6.3 Study Results
We present the findings from our field study in the following sec-
tions. Section 6.3.1 presents the types of tasks participants designed
for their community bots and their perceptions of these tasks, as
shared in the post-study survey. Our results show that participants
were able to design a wide variety of tasks tailored to their commu-
nities, and they felt these tasks reflected their unique community
needs and culture. Section 6.3.2 explores how participants collabo-
rated using case-based provocations. Across the six communities,
participants created a total of over 100 proposals and 800 saved test
cases during the study. Analysis of the multiple-choice questions
that participants answered after each proposal edit revealed they
were more likely to iterate on proposals in response to Botender’s
case-based provocations, which encouraged collective reflection
and discussion about desirable bot behaviors. Feedback from the
post-study survey provides further insight into how participants
collaboratively improved and discussed bot designs based on op-
portunities identified through these cases. Finally, Section 6.3.3
presents additional feedback from participants on aspects of Boten-
der’s design, beyond the case-based provocations, that they found
particularly helpful for collaborative bot design. These include the
overall system workflow, seamless integration with the community
platform, and the use of natural language for bot design. Overall,
participants found that the bot behaved in ways that aligned with
their needs and community norms, attributing this to the collabora-
tive design process enabled by Botender. Over 97% of participants
expressed interest in continuing to use Botender after the study
period.

6.3.1 With Botender, participants designed a variety of tasks
for the bot tailored to the specific needs and norms of their
own communities. Table 2 presents descriptive statistics from
the field study, including the number of tasks each group deployed

Botender: Supporting Communities in Collaboratively Designing AI Agents through Case-Based Provocations

Table 1: Field study participant group demographics, including the number of participants in each group, the total number of
community members in each group’s server where Botender was deployed, and a brief description of each server community.

Group ID Group Size Server Size Server Type

G1 5 5 A close-knit friend group server for hanging out and having fun
G2 3 17 A fan community for an indie music band to connect with their superfans
G3 6 27 A research lab led by a professor, with members including students and collaborators
G4 6 50 An offshoot of a larger community, created for members who share common interests in gaming
G5 5 66 A friend group and their close friends, primarily used for socializing and gaming
G6 6 429 A student organization within a university that organizes hackathons

Table 2: The number of tasks deployed and the proposals and
cases created by each group during the field study.

Group ID Tasks Proposals Cases

G1 18 32 166
G2 4 3 14
G3 10 23 204
G4 17 37 183
G5 16 28 165
G6 4 14 68

Total 69 137 800

and the number of proposals and cases they created to support task
deployment. To provide a glimpse of the resulting tasks, Table 3
presents a sample of tasks deployed by each group. As one partici-
pant noted, the range of tasks is quite broad and diverse, spanning
everything “from funny quips to actual advice and help to games
and welcome messages” (S4, G5). The tasks participants created for
the bot align with prior research [56], demonstrating a balance
between task-oriented and socially-oriented functions, or combina-
tions of both. As shown in Table 3, the types of tasks participants
created generally reflect the nature of the server, whether it is more
professionally or socially oriented.

Participants agreed with the statement that “the bot we designed
behaves in a way that reflects the specific needs, norms, and culture
of our Discord community” (𝑀 = 6.10, 𝑆𝐷 = 0.94). They shared that
the bot behaves in ways that “adhere to our culture, humor and jokes”
(S4, G5), and “reflects us as a community a lot since we approached the
tasks we made with a lot of light humor while keeping the usefulness
aspect” (S22, G1). Participants were impressed by how specifically
the bot could be tailored to fit their server: “We came up with some
really specific ways to greet our fans. [...] We specifically asked [the
bot] to greet people in a way that was both fabulous and gay and
fun, but at the same time sad because our band plays sad country
songs. It did such a great job of that. It was unbelievable” (S27, G2). In
addition to the content of the messages the bot sends (as defined by
a task’s action), participants also appreciated the precise timing of
when the bot chimes in (as determined by its trigger). For example,
a participant found “the fact that it could be prompted in such detail,
made it great with timing [...], which made for a fun moment in the
server” (S15, G4).

59%

37%

0%

25%

50%

75%

100%

issue case

P
er

ce
nt

ag
e

Figure 9: The percentage of proposal edits aimed at address-
ing specific cases participants reviewed versus general issues
that they thought of during the proposal iteration process.
A significantly higher proportion of edits were inspired by
specific cases.

6.3.2 Participants found that case-based provocations ef-
fectively facilitated iterative, collaborative design. To un-
derstand how participants iteratively developed these tasks, we
examined the results from the multiple-choice question they an-
swered each time they edited a proposal. Specifically, participants
were asked whether their motivation for making an edit was based
on a specific case or a general issue. As shown in Figure 9, a one-
sided hypothesis test revealed that, when using Botender, a larger
proportion (𝑝 < 0.001) of proposal edits were aimed at addressing
specific cases (59%) rather than general issues (37%). Meanwhile,
95% of the 800 cases saved to the proposals were generated by
Botender’s case-based provocation algorithm, rather than being
manually entered by participants. Taken together, these results sug-
gest that Botender’s case-based provocations effectively facilitate
iterative proposal editing during the design process. This aligns
with participants’ experiences, as they reported that Botender’s
case-based provocation “significantly reduced headaches in prompt
engineering and what would have required additional proposals to fix.
[...] It allowed me to iterate quickly on my prompts while drafting the
task for the proposals. I often didn’t even need to make any manual

Kuo et al.

Table 3: Selected tasks from each group reflect the diverse range of tasks they designed for the bot to address the unique needs
and norms of their communities. The categories of tasks are assigned according to the taxonomy identified in prior work [56],
with definitions and examples provided in Section 2.1. The full list of tasks created by each group is included in Appendix C.1.

Group Task Name Trigger Action Category

G1 Sideeyeomatic Whenever someone says anything ques-
tionable or suspicious - things that
would generally make someone give
them the side eye.

Post this gif: https://tenor.com/p6t9IvV9eBF.gif engagement

G2 Merch Link Whenever someone asks about or ex-
presses interest in supporting the band,
or buying band merchandise or physi-
cal copies of the music, or mentions that
they enjoy the types of items we sell
including vinyl albums, cassette tapes,
band shirts, stickers, etc.

Let them know that we have merch items includ-
ing but not limited to shirts, bandanas, stickers,
vinyl albums, cassette tapes and direct them to the
website [url] to purchase these and other items

promotion

G3 Lab location When someone asks about [lab] location
or room number or access info

Reply them with [lab name] ([building code]
[room number]), mention that they need to re-
quest access through [department acronym] form
[service portal url]. Also remind them to get access
to the [graduate lounge location] to enjoy free cof-
fee and spend their free time or study. Use proper
formatting and emojis

information

G4 Puppy Training All users in this server own dogs and like
to have fun by roleplaying their dogs
talking. Whenever a user imitates their
dogs through actions such as barking or
voices thoughts from the perspective of
their dog, you should trigger

To encourage responsible dog behaviour and also
set examples of proper dog behaviour, please
praise or scold users as if they are a dog when dogs
are mentioned. Users believe their dogs (rightfully
so) are very cute, so try to address pets by pet
names like "puppy" or "doggy" rather tha scientific
terms such as "dog" or "canine"

engagement

G5 Woah, easy now Detect angry or aggressive language Act like a old timey southern cowboywho is trying
to calm down his horse.

moderation

G6 Info overview Any question about hackathons,
[hackathon event], [student club]

Link to [event website] for [hackathon event] spe-
cific questions. If asking about what a hackathon
is then provide overview of hackathon. If asking
about [student club], link to [club url] page as well
as provide information about the club.

information

test cases thanks to the generating feature which reduced friction in
quickly getting a proposal together” (S6, G5).

Participants’ self-reported ratings and explanations in the post-
study survey further support this finding. Specifically, they agreed
that “they find the test cases helpful in revealing opportunities to
improve the bot” (𝑀 = 6.31, 𝑆𝐷 = 1.00) and shared experiences of
how the cases supported their iterative process. For example, one
participant noted that the test cases “allowed me to fine tune the
description I wrote for letting the bot know when it should respond.
This helped me to realize that sometimes I was not writing detailed
enough descriptions” (S22, G1). Another participant mentioned that
the “test cases reveal niche scenarios or unintended uses that may
cause the users to reflect and change the original prompt. This was
very useful” (S8, G5). These user experiences align with the goal of
Botender’s case-based provocation algorithm, which is designed to

uncover common issues often overlooked by non-AI experts, such
as ambiguous prompts or unintended downstream consequences,
rather than just generating cases that validate what users have
already written. As one participant put it: “The test cases were helpful
not just in guiding the bot about false positives/negatives, they also
helped clarify the task based on the kinds of test cases it generated” (S3,
G3). Participants appreciated the thought-provoking and diverse
test cases, stating “the test cases were brilliant and diverse. [...] It was
helpful especially because it generated some scenarios which I may
not have thought of myself to create” (S14, G6). They also shared
that the “test cases make it very easy to spot when prompting is faulty
or needs tweaking. I tweak my prompts at least once for each of my
proposals, based off what I see when testing” (S23, G4) and “the test
cases made it easy to see how a proposal would progress” (S26, G4).

https://tenor.com/p6t9IvV9eBF.gif

Botender: Supporting Communities in Collaboratively Designing AI Agents through Case-Based Provocations

In addition to supporting design iteration, participants reported
that Botender’s case-based provocations effectively surfaced differ-
ing opinions and sparked discussion about desirable bot behavior
within the community. In particular, participants agreed that “they
find the test cases helpful in surfacing situations where people might
have differing opinions about whether the bot’s response is appropri-
ate” (𝑀 = 5.45, 𝑆𝐷 = 1.40). Participants found that the test cases
“highlighted gray areas where one person might see the response as
appropriate while another might not. For example, in cases involving
tone, whether the bot should be more direct or more playful, the test
cases made those differences in perspective visible” (S2, G3). People’s
differing reactions to these gray areas “laid the groundwork for fur-
ther discussion” (S25, G4) or “gave us new alterations or entirely
new ideas” (S13, G5). For example, a participant shared, “The up-
vote/downvote system works perfectly for finding which behaviors are
controversial. [...] We would notice that there’s not a pure consensus
on one of the saved test case response[s], which would spark a small
discussion” (S6, G5). However, a few participants mentioned that
they didn’t encounter much disagreement “because we all had sim-
ilar thoughts” (S27, G2). Among the groups that participated, we
observed that this tended to occur in the smallest communities.

Finally, participants found the test cases helpful in guiding their
collective decision-making on whether to deploy a proposal. For
example, as one participant shared: “It’s very easy for a chatbot to
misunderstand a prompt, or tack on unnecessary things, the same
goes for a human when only looking at what the prompt says, and
the actual test cases gives a realistic view of what the implementation
will look like, what Botender will/could say, and won’t/couldn’t say.
We had a task that referenced religion, which was a controversial
topic to some, but the test cases served to show that Botender was
doing so in an appropriate way and did not step out of line, and
that eventually made us agree on implementing the task” (S15, G4).
Similarly, another participant shared that the test cases sometimes
led them to decide against deploying a proposal after seeing how
the bot would actually respond: “I saw this with the gaslighting
bot, when people in the group saw the responses it generated were
in general invalidating of ones feelings, the group was hesitant on
approving it” (S18, G1). Participants found the test cases useful for
collective decision-making because “the test cases give us a good
idea on how the bot reacts to different situations, it also shows where
it thrives/where its more limited in its capabilities” (S13, G5).

6.3.3 Participants emphasized that Botender’s overall work-
flow and integration with their community platform were
helpful in fostering community participation. Regarding Bo-
tender’s overall workflow, participants agreed that “they can easily
collaborate with others in bot design using Botender” (𝑀 = 6.00, 𝑆𝐷 =

1.10). From proposing and iterating on tasks to deploying them,
participants found Botender’s workflow effectively facilitated col-
laboration and ensured that tasks reflected the community’s needs
and norms. For example, participants found the proposal design
intuitive and well-organized, making it easy to navigate desired
changes: “I think the interface[s] for creating proposals and tasks were
very easy to navigate and made it easy to collaborate with others!
I liked seeing the entire list view with everyone’s proposals [...] It
made it easy for me to see which ones I wanted to vote for, and which
ones were ready to deploy” (S22, G1). Participants also found that

being able to collaboratively edit proposals helped improve their
quality: “I felt like a lot of my proposals were pretty brief, so I appre-
ciate [another user] editing mine. More than once I noticed he had
edited a proposal to add many more details!” (S19, G1). Meanwhile,
participants appreciated the requirement of upvotes for proposal
deployment, as it helps ensure that deployed tasks align with the
community’s needs and norms: ‘[The tasks] fit into the norms and
culture of our community. This is evident in the requirement of need-
ing at least 3 upvotes to deploy, meaning that we as a group decided
what did and did not mesh‘ (S18, G1). In the same vein, the voting
requirement also “prevent[ed] a single person from making a bot that
would not serve the community well” (S7, G5).

Participants also emphasized that deep integration with the com-
munity platform they already use is key to keeping community
members actively engaged in the bot design process. They agreed
that “the experience of designing the bot with the Botender system in-
tegrates well with their usage of Discord” (𝑀 = 6.14, 𝑆𝐷 = 1.57), and
shared specific integrations they found particularly valuable. For
example, many participants expressed how much they appreciated
having a dedicated discussion thread for each proposal on Discord:
“It was an amazing user experience, having it automatically create
threads and open/close proposals automatically was very efficient,
and felt very modern” (S11, G6). They found it “really cool that it
gives live updates via threads on discord, that was a great idea that is
actually useful” (S13, G5) and believed that “the built-in notifications
kept everyone in the loop. For example, whenever someone made a
new proposal, the notification feature made it easy to see updates right
away and give feedback without missing anything” (S2, G3). They
found this approach effectively coordinated discussions because
“using threads for the ticketing system eliminates need to manually
organize the discussions and keeps everything in one place” (S6, G5),
and noted that “the use of threads within discord for the discussion
of proposals is the best way it could be done in my opinion” (S25,
G4). In addition to the threading design, participants found “the
UI and layout of the [Botender] website is extremely intuitive ” (S26,
G4) and appreciated how details like the login process and overall
aesthetics seamlessly fit with their use of Discord. For example,
participants shared “it’s very simple to manage the bot via the OAuth
login dashboard and we had no issues because of its deep integration
with Discord” (S6, G5), and “I think this is my favorite part about
Botender! [...] it is very easy to use and very much fits the vibes and
general aesthetic of Discord very well” (S15, G4). Overall, partici-
pants found “Botender fit naturally into how I already use Discord
[...], which made collaboration smooth and kept the focus on shaping
the bot, not juggling tools” (S2, G3).

Finally, while using natural language to write prompts is not a
unique feature of the Botender system, several participants noted
that this greatly facilitates broader community participation in bot
design. For example, a participant shared that “the way it’s designed
allows me to describe tasks in plain English, and it understands what
I mean without needing technical setup. [...] It reduces friction, lets
me focus on shaping the community’s culture, and makes it easier to
adapt the bot’s behavior to fit our needs. [...] That makes it accessible
not only to me but also to other community members who may not
have a technical background” (S2, G3). A participant without coding
background echoed this sentiment, sharing that setting up other
bots was much more difficult compared to Botender: “We liked how

Kuo et al.

easy it was to implement ideas. We could talk about them, and then up
vote or down vote them based on what we thought. In the past anything
like this was really difficult to use. It took a lot of planning and stress.
This did not feel that way at all” (S27, G2). Overall, participants
found “the bot is a great addition to the server. The fact it’s so easy to
customize makes it really simple for any member to contribute, and
shape something that reflects what we needs” (S25, G4). In the post-
study survey, 97% of participants expressed interest in continuing
to use Botender after the study.

7 Discussion
Bots play vital roles and act as essential socio-technical infrastruc-
ture within online communities. It is crucial for communities to
collaboratively design bots that meet their specific needs and norms,
rather than leaving this to outsiders or just a few technically skilled
members. In this paper, we present Botender, a system that sup-
ports communities in collaboratively proposing, iterating on, and
deploying bots powered by LLM-based agents. In particular, Boten-
der facilitates this collaborative design process through case-based
provocations, concrete interaction scenarios generated to provoke
user reflection and discussion about desirable bot behaviors within
their community. We conducted a validation study and a field study
to understand how people perceive and use these case-based provo-
cations to collaboratively design bots in real-world communities.
Through a validation study (Section 5), we saw that participants
found Botender’s case-based provocations revealed more oppor-
tunities for bot improvement, compared with standard test cases.
Through a field study (Section 6), we found that real-world Discord
communities effectively collaborated on designing bots tailored to
their specific needs and norms using Botender’s case-based provo-
cations. This collaboration was further supported by Botender’s
overall collaborative workflow, seamless integration with the com-
munity platform, and the use of natural language for bot design. In
this section, we discuss future directions for HCI systems to better
support the collaborative and participatory design of community
bots powered by AI agents.

7.1 Expanding the Capabilities of AI Agents
As the first attempt to support collaborative design of AI agents
in community contexts, the current version of Botender focuses
on enabling the design of single-turn, LLM-based conversational
AI agents. This means that the bot and its underlying agents can
process only one user message at a time and respond with a single
message. Channel names are the only context information that al-
lows the agents to tailor their behavior more specifically. However,
as mentioned in Section 4.5, Botender’s system and agent archi-
tecture is designed to handle a broader range of platform events,
actions, and context information. On the event side, in addition to
listening to user messages, Botender’s listener can detect a wider
range of platform events provided by the platform API, such as
users joining channels, the creation of new threads, or changes to
user permissions. These events can be translated into information
that agents can interpret and use to provide appropriate action in-
structions. Similarly, on the action side, Botender’s action executor
can carry out a broader range of actions available through the API,
such as creating new channels, muting users when appropriate, or

searching the internet for up-to-date information.15 The context
information available to agents can also be expanded depending
on the event. For example, for the event of a user sending a mes-
sage, the context could include the time, the user’s permission, or
ten previous messages, providing the agent with richer context to
guide its behavior. Future systems could expand agent capabilities
based on what would be most useful to communities. However, as
prior research points out [31], granting bots more permissions can
inevitably raise concerns among community members about poten-
tial misuse and the risk of unrecoverable consequences. Striking
the right balance between agent capabilities and user concerns will
be an important challenge to address.

7.2 Advancing Case-Based Provocations
We see several opportunities to further explore the concept of case-
based provocations for prompt and bot design. First, the case-based
provocation algorithm presented in this paper represents a proof-
of-concept. We see an exciting space for future research to explore
the design of case generation algorithms that can more effectively
provoke user reflection on opportunities for prompt improvement
and surface points for discussion in collaborative design settings.
For example, future work might leverage data from users’ collabo-
rative interactions (e.g., edits, discussions, and votes on previously
displayed cases) to guide the generation of cases with potential to
surface community disagreements. Furthermore, the case-based
provocations in our study focused on single-turn interactions. It
remains an open question how to generate effective case-based
provocations for more advanced bots that respond based on longer
message contexts (i.e., multi-turn interactions among a group of
people), while still ensuring that generated cases are concise enough
to support rapid review in the midst of a collaborative design pro-
cess. Finally, as agents’ capabilities expand, it will be necessary to
advance the case-based provocation algorithm accordingly. Con-
sider a simple functional expansion in which the agents not only
read user messages but also examine images sent to the group for
content moderation purposes. In this scenario, case-based provoca-
tions would consist of a wide variety of generated images created to
provoke user reflection and discussion about which types of images
should be moderated. As the system expands further to support a
broader range of platform events and actions, the complexity of
provocations, and the algorithms required to generate them, will
increase significantly. Future research will need to explore what
these provocations might look like and how algorithms can most
effectively generate them to support user reflection and discussion
on desirable agent behavior.

7.3 Scaling to Broaden Participation
Beyond expanding agent capabilities, another scaling challenge
emerges as the number of community members using the system
increases. In our current field study, groups have a maximum of
six participants, with deployments on servers of up to 429 mem-
bers. While this represents a reasonable size for many small to
medium Discord communities, there are also much larger commu-
nities, such as the Discord server of the Wikimedia Community,

15We experimented with internet search, but found that it made case generation too
slow and affected the user experience. It may become faster as LLMs improve.

Botender: Supporting Communities in Collaboratively Designing AI Agents through Case-Based Provocations

which has nearly 10,000 members. Given Wikimedia’s emphasis
on broad participation, many of these members may also be inter-
ested in contributing to collaborative bot design. Future research
is needed to explore what design changes or alternatives are nec-
essary to support broader community participation. For example,
providing clearer guidance on the division of labor could be helpful.
Members familiar with community norms could focus on iterat-
ing on proposals, while others could contribute by creating cases
to support design iterations. Collective decision-making around
proposal deployment will also need to be adapted. For instance,
it is important to strike a balance between keeping the require-
ments for deployment accessible while ensuring that implemented
changes truly reflect the broader community’s needs. Overall, these
challenges relate to broader HCI research on designing systems
for community participation, specifically navigating the tradeoff
between lowering participation barriers and supporting effective
collective action [38, 52, 61].

7.4 Navigating Inevitable Power Dynamics
Botender is designed to support a collaborative approach to bot
design, involving participation and deliberation among community
members. However, it is important to note that the system alone
can hardly overcome the power dynamics that may inevitably exist
within different communities. For example, in smaller, close-knit
friend groups, power dynamics may be more distributed, allowing
members to freely propose, iterate on, and deploy desired changes to
their bots. However, in communities with more hierarchical power
structures, members may be more hesitant to propose changes, and
deployment decisions may depend heavily on the preferences of
community leaders. Indeed, one field study participant expressed
this desire in the post-study survey: “As someone with higher admin-
istrative rights than other members in the server, I think that I should
be able to remove a task without needing other people to upvote a
proposal.” While Botender’s current design prevents a single person
from making design changes that affect the entire community, the
adoption of this collaborative approach still depends on commu-
nity leaders, especially their decision to install the system on their
server in the first place. We hope that Botender provides commu-
nity members with an option for a more collaborative, bottom-up
approach to bot design, and that our work inspires further research
and systems that enable more democratic approaches to community
governance [37, 47, 74].

8 Conclusion
In this work, we have demonstrated how a system can support
users in collaborative bot design through case-based provocations.
Our findings show that these provocations can effectively surface
opportunities for bot improvement, reveal potential sources of dis-
agreement, and support the collaborative bot design process in real
online communities. Building on this work, future HCI systems
should explore expanding bot capabilities to meet diverse commu-
nity needs, explore the design of more advanced case-based provo-
cation techniques, address scaling challenges to enable broader
participation, and navigate power dynamics within communities.

Acknowledgments
The funding for this research was provided by CMU’s Block Cen-
ter for Technology and Society, Metagov’s Grant for Interoperable
Deliberative Tools, and the National Science Foundation (NSF) un-
der Award No. 2349558. Tzu-Sheng Kuo was supported by the
K&L Gates Presidential Fellowship in Ethics and Computational
Technologies. We thank Michael Bernstein, Aniket Kittur, Sherry
TongshuangWu, NikolasMartelaro, Chien-Sheng JasonWu, Pranav
Khadpe, Kevin Feng, Xingyu Bruce Liu, and Tiffany Chih for their
insightful feedback on the system design. We are also grateful to
Aileen Benedict, Sameer Patil, Estelle Smith, Rotem Guttman, and
Joon Jang for their assistance with recruitment for the study. Finally,
we thank Isadora Krsek for designing the Botender logo.

References
[1] Agnar Aamodt and Enric Plaza. 1994. Case-based reasoning: foundational issues,

methodological variations, and system approaches. AI Commun. 7, 1 (mar 1994),
39–59.

[2] Saleema Amershi, Maya Cakmak, W. Bradley Knox, and Todd Kulesza. 2014.
Power to the People: The Role of Humans in Interactive Machine Learning. AI
Mag. 35, 4 (Dec. 2014), 105–120. doi:10.1609/aimag.v35i4.2513

[3] Yan Aquino, Pedro Bento, Arthur Buzelin, Lucas Dayrell, Samira Malaquias, Caio
Santana, Victoria Estanislau, Pedro Dutenhefner, Guilherme HG Evangelista,
Luisa G Porfírio, et al. 2025. Discord Unveiled: A Comprehensive Dataset of
Public Communication (2015-2024). arXiv preprint arXiv:2502.00627 (2025).

[4] Ian Arawjo, Chelse Swoopes, Priyan Vaithilingam, Martin Wattenberg, and
Elena L. Glassman. 2024. ChainForge: A Visual Toolkit for Prompt Engineering
and LLMHypothesis Testing. In Proceedings of the 2024 CHI Conference on Human
Factors in Computing Systems (Honolulu, HI, USA) (CHI ’24). Association for
Computing Machinery, New York, NY, USA, Article 304, 18 pages. doi:10.1145/
3613904.3642016

[5] Zahra Ashktorab, Michael Desmond, James M. Johnson, Qian Pan, Casey Dugan,
Michelle Brachman, and Carolina Spina. 2023. SME-in-the-loop: Interaction
Preferences when Supervising Bots in Human-AI Communities. In Proceedings
of the 2023 ACM Designing Interactive Systems Conference (Pittsburgh, PA, USA)
(DIS ’23). Association for Computing Machinery, New York, NY, USA, 2281–2303.
doi:10.1145/3563657.3596100

[6] Stephen Bach, Victor Sanh, Zheng Xin Yong, Albert Webson, Colin Raffel, Nihal V.
Nayak, Abheesht Sharma, Taewoon Kim, M Saiful Bari, Thibault Fevry, Zaid
Alyafeai, Manan Dey, Andrea Santilli, Zhiqing Sun, Srulik Ben-david, Canwen
Xu, Gunjan Chhablani, Han Wang, Jason Fries, Maged Al-shaibani, Shanya
Sharma, Urmish Thakker, Khalid Almubarak, Xiangru Tang, Dragomir Radev,
Mike Tian-jian Jiang, and Alexander Rush. 2022. PromptSource: An Integrated
Development Environment and Repository for Natural Language Prompts. In
Proceedings of the 60th Annual Meeting of the Association for Computational
Linguistics: System Demonstrations, Valerio Basile, Zornitsa Kozareva, and Sanja
Stajner (Eds.). Association for Computational Linguistics, Dublin, Ireland, 93–104.
doi:10.18653/v1/2022.acl-demo.9

[7] Shreya Bali, Pranav Khadpe, Geoff Kaufman, and Chinmay Kulkarni. 2023. Nooks:
Social Spaces to Lower Hesitations in Interacting with New People at Work. In
Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems
(Hamburg, Germany) (CHI ’23). Association for Computing Machinery, New
York, NY, USA, Article 614, 18 pages. doi:10.1145/3544548.3580796

[8] Cheng Chen, Sangwook Lee, Eunchae Jang, and S. Shyam Sundar. 2024. Is Your
Prompt Detailed Enough? Exploring the Effects of Prompt Coaching on Users’
Perceptions, Engagement, and Trust in Text-to-Image Generative AI Tools. In
Proceedings of the Second International Symposium on Trustworthy Autonomous
Systems (Austin, TX, USA) (TAS ’24). Association for Computing Machinery, New
York, NY, USA, Article 9, 12 pages. doi:10.1145/3686038.3686060

[9] Nan-Chen Chen, Jina Suh, Johan Verwey, Gonzalo Ramos, Steven Drucker, and
Patrice Simard. 2018. AnchorViz: Facilitating Classifier Error Discovery through
Interactive Semantic Data Exploration. In Proceedings of the 23rd International
Conference on Intelligent User Interfaces (Tokyo, Japan) (IUI ’18). Association
for Computing Machinery, New York, NY, USA, 269–280. doi:10.1145/3172944.
3172950

[10] Quan Ze Chen and Amy X. Zhang. 2023. Judgment Sieve: Reducing Uncertainty
in Group Judgments through Interventions Targeting Ambiguity versus Dis-
agreement. Proc. ACM Hum.-Comput. Interact. 7, CSCW2, Article 283 (Oct. 2023),
26 pages. doi:10.1145/3610074

[11] Laura Dabbish, Colleen Stuart, Jason Tsay, and Jim Herbsleb. 2014. Transparency
and coordination in peer production. arXiv preprint arXiv:1407.0377 (2014).

https://doi.org/10.1609/aimag.v35i4.2513
https://doi.org/10.1145/3613904.3642016
https://doi.org/10.1145/3613904.3642016
https://doi.org/10.1145/3563657.3596100
https://doi.org/10.18653/v1/2022.acl-demo.9
https://doi.org/10.1145/3544548.3580796
https://doi.org/10.1145/3686038.3686060
https://doi.org/10.1145/3172944.3172950
https://doi.org/10.1145/3172944.3172950
https://doi.org/10.1145/3610074

Kuo et al.

[12] Bich Ngoc (Rubi) Doan and Joseph Seering. 2025. The Design Space for Online
Restorative Justice Tools: A Case Study with ApoloBot. In Proceedings of the 2025
CHI Conference on Human Factors in Computing Systems (CHI ’25). Association
for Computing Machinery, New York, NY, USA, Article 694, 19 pages. doi:10.
1145/3706598.3713598

[13] Ian Drosos, Advait Sarkar, Neil Toronto, et al. 2025. " It makes you think":
Provocations Help Restore Critical Thinking to AI-Assisted Knowledge Work.
arXiv preprint arXiv:2501.17247 (2025).

[14] Sebastian Elbaum, Alexey G. Malishevsky, and Gregg Rothermel. 2000. Prioritiz-
ing test cases for regression testing. SIGSOFT Softw. Eng. Notes 25, 5 (Aug. 2000),
102–112. doi:10.1145/347636.348910

[15] Sebastian Elbaum, Gregg Rothermel, and John Penix. 2014. Techniques for im-
proving regression testing in continuous integration development environments.
In Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations
of Software Engineering (Hong Kong, China) (FSE 2014). Association for Comput-
ing Machinery, New York, NY, USA, 235–245. doi:10.1145/2635868.2635910

[16] Will Epperson, Gagan Bansal, Victor C Dibia, Adam Fourney, Jack Gerrits,
Erkang (Eric) Zhu, and Saleema Amershi. 2025. Interactive Debugging and
Steering of Multi-Agent AI Systems. In Proceedings of the 2025 CHI Conference on
Human Factors in Computing Systems (CHI ’25). Association for Computing Ma-
chinery, New York, NY, USA, Article 156, 15 pages. doi:10.1145/3706598.3713581

[17] Dmitry Epstein, Cynthia Farina, and Josiah Heidt. 2014. The value of words:
Narrative as evidence in policy making. Evidence & Policy 10, 2 (2014), 243–258.

[18] Jerry Alan Fails and Dan R. Olsen. 2003. Interactive machine learning. In Pro-
ceedings of the 8th International Conference on Intelligent User Interfaces (Miami,
Florida, USA) (IUI ’03). Association for Computing Machinery, New York, NY,
USA, 39–45. doi:10.1145/604045.604056

[19] Sina Fazelpour and Will Fleisher. 2025. The Value of Disagreement in AI Design,
Evaluation, and Alignment. In Proceedings of the 2025 ACM Conference on Fair-
ness, Accountability, and Transparency (FAccT ’25). Association for Computing
Machinery, New York, NY, USA, 2138–2150. doi:10.1145/3715275.3732146

[20] Li Feng, Ryan Yen, Yuzhe You, Mingming Fan, Jian Zhao, and Zhicong Lu. 2024.
CoPrompt: Supporting Prompt Sharing and Referring in Collaborative Natural
Language Programming. In Proceedings of the 2024 CHI Conference on Human
Factors in Computing Systems (Honolulu, HI, USA) (CHI ’24). Association for
Computing Machinery, New York, NY, USA, Article 934, 21 pages. doi:10.1145/
3613904.3642212

[21] Adam Fourney, Gagan Bansal, Hussein Mozannar, Cheng Tan, Eduardo Salinas,
Friederike Niedtner, Grace Proebsting, Griffin Bassman, Jack Gerrits, Jacob Alber,
et al. 2024. Magentic-one: A generalist multi-agent system for solving complex
tasks. arXiv preprint arXiv:2411.04468 (2024).

[22] R Stuart Geiger. 2014. Bots, bespoke, code and the materiality of software
platforms. Information, Communication & Society 17, 3 (2014), 342–356.

[23] R Stuart Geiger and Aaron Halfaker. 2013. When the levee breaks: without bots,
what happens to Wikipedia’s quality control processes?. In Proceedings of the
9th International Symposium on Open Collaboration. 1–6.

[24] R Stuart Geiger and David Ribes. 2010. The work of sustaining order inWikipedia:
The banning of a vandal. In Proceedings of the 2010 ACM conference on Computer
supported cooperative work. 117–126.

[25] Aaron Halfaker and R. Stuart Geiger. 2020. ORES: Lowering Barriers with
Participatory Machine Learning in Wikipedia. Proc. ACM Hum.-Comput. Interact.
4, CSCW2, Article 148 (Oct. 2020), 37 pages. doi:10.1145/3415219

[26] Aaron Halfaker, Aniket Kittur, and John Riedl. 2011. Don’t bite the newbies: how
reverts affect the quantity and quality of Wikipedia work. In Proceedings of the
7th International Symposium on Wikis and Open Collaboration (Mountain View,
California) (WikiSym ’11). Association for Computing Machinery, New York, NY,
USA, 163–172. doi:10.1145/2038558.2038585

[27] Aaron L Halfaker, Tzu-Sheng Kuo, Ciell Brusse, Kenneth Holstein, and Haiyi
Zhu. 2025. Collective Meaning Cascades but Strange Ducks Swim Upstream:
Facilitating Collective Meaning-making through Co-development of AI Models.
In Extended Abstracts of the 2025 CHI Conference on Human Factors in Computing
Systems (CHI EA ’25). doi:10.1145/3706599.3706683

[28] Jonggi Hong, Kyungjun Lee, June Xu, and Hernisa Kacorri. 2020. Crowdsourcing
the Perception of Machine Teaching. In Proceedings of the 2020 CHI Conference on
Human Factors in Computing Systems (Honolulu, HI, USA) (CHI ’20). Association
for Computing Machinery, New York, NY, USA, 1–14. doi:10.1145/3313831.
3376428

[29] Stephanie Houde, Kristina Brimijoin,MichaelMuller, Steven I. Ross, Dario Andres
Silva Moran, Gabriel Enrique Gonzalez, Siya Kunde, Morgan A. Foreman, and
Justin D.Weisz. 2025. Controlling AI Agent Participation in Group Conversations:
A Human-Centered Approach. In Proceedings of the 30th International Conference
on Intelligent User Interfaces (IUI ’25). Association for Computing Machinery,
New York, NY, USA, 390–408. doi:10.1145/3708359.3712089

[30] Saffron Huang, Divya Siddarth, Liane Lovitt, Thomas I. Liao, Esin Durmus,
Alex Tamkin, and Deep Ganguli. 2024. Collective Constitutional AI: Aligning a
Language Model with Public Input. In Proceedings of the 2024 ACM Conference
on Fairness, Accountability, and Transparency (Rio de Janeiro, Brazil) (FAccT
’24). Association for Computing Machinery, New York, NY, USA, 1395–1417.

doi:10.1145/3630106.3658979
[31] Sohyeon Hwang, Charles Kiene, Serene Ong, and Aaron Shaw. 2024. Adopting

Third-party Bots for Managing Online Communities. Proc. ACM Hum.-Comput.
Interact. 8, CSCW1, Article 216 (April 2024), 26 pages. doi:10.1145/3653707

[32] Lilly C. Irani and M. Six Silberman. 2013. Turkopticon: interrupting worker
invisibility in amazon mechanical turk. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems (Paris, France) (CHI ’13). Association
for Computing Machinery, New York, NY, USA, 611–620. doi:10.1145/2470654.
2470742

[33] Shagun Jhaver, Iris Birman, Eric Gilbert, and Amy Bruckman. 2019. Human-
Machine Collaboration for Content Regulation: The Case of Reddit Automodera-
tor. ACM Trans. Comput.-Hum. Interact. 26, 5, Article 31 (July 2019), 35 pages.
doi:10.1145/3338243

[34] Soomin Kim, Jinsu Eun, Changhoon Oh, Bongwon Suh, and Joonhwan Lee. 2020.
Bot in the Bunch: Facilitating Group Chat Discussion by Improving Efficiency and
Participation with a Chatbot. In Proceedings of the 2020 CHI Conference on Human
Factors in Computing Systems (Honolulu, HI, USA) (CHI ’20). Association for
Computing Machinery, New York, NY, USA, 1–13. doi:10.1145/3313831.3376785

[35] Reuben Kirkham. 2023. (Legal Design) Research through Litigation.
arXiv:2303.14336 [cs.HC] https://arxiv.org/abs/2303.14336

[36] Robert E Kraut and Paul Resnick. 2012. Building successful online communities:
Evidence-based social design. Mit Press.

[37] Tzu-Sheng Kuo, Quan Ze Chen, Amy X. Zhang, Jane Hsieh, Haiyi Zhu, and
Kenneth Holstein. 2025. PolicyCraft: Supporting Collaborative and Participatory
Policy Design through Case-Grounded Deliberation. In Proceedings of the 2025
CHI Conference on Human Factors in Computing Systems (CHI ’25). Association
for Computing Machinery, New York, NY, USA, Article 805, 24 pages. doi:10.
1145/3706598.3713865

[38] Tzu-Sheng Kuo, Aaron Lee Halfaker, Zirui Cheng, Jiwoo Kim, Meng-Hsin
Wu, Tongshuang Wu, Kenneth Holstein, and Haiyi Zhu. 2024. Wikibench:
Community-Driven Data Curation for AI Evaluation on Wikipedia. In Proceed-
ings of the 2024 CHI Conference on Human Factors in Computing Systems (Hon-
olulu, HI, USA) (CHI ’24). Association for Computing Machinery, New York, NY,
USA, Article 193, 24 pages. doi:10.1145/3613904.3642278

[39] Yoonho Lee, Michelle S. Lam, Helena Vasconcelos, Michael S. Bernstein, and
Chelsea Finn. 2024. Clarify: Improving Model Robustness With Natural Lan-
guage Corrections. In Proceedings of the 37th Annual ACM Symposium on User
Interface Software and Technology (Pittsburgh, PA, USA) (UIST ’24). Associa-
tion for Computing Machinery, New York, NY, USA, Article 133, 19 pages.
doi:10.1145/3654777.3676362

[40] Pascale Lehoux, Fiona Alice Miller, and Bryn Williams-Jones. 2020. Anticipatory
governance and moral imagination: Methodological insights from a scenario-
based public deliberation study. Technological Forecasting and Social Change 151
(2020), 119800.

[41] Xian Li, Yuanning Han, Di Liu, Pengcheng An, and Shuo Niu. 2024. FlowGPT:
Exploring Domains, Output Modalities, and Goals of Community-Generated AI
Chatbots. In Companion Publication of the 2024 Conference on Computer-Supported
Cooperative Work and Social Computing. 355–361.

[42] Michael Xieyang Liu, Savvas Petridis, Vivian Tsai, Alexander J. Fiannaca, Alex
Olwal, Michael Terry, and Carrie J. Cai. 2025. Gensors: Authoring Personal-
ized Visual Sensors with Multimodal Foundation Models and Reasoning. In
Proceedings of the 30th International Conference on Intelligent User Interfaces
(IUI ’25). Association for Computing Machinery, New York, NY, USA, 755–770.
doi:10.1145/3708359.3712085

[43] Xingyu Bruce Liu, Shitao Fang, Weiyan Shi, Chien-Sheng Wu, Takeo Igarashi,
and Xiang ’Anthony’ Chen. 2025. Proactive Conversational Agents with Inner
Thoughts. In Proceedings of the 2025 CHI Conference on Human Factors in Com-
puting Systems (CHI ’25). Association for Computing Machinery, New York, NY,
USA, Article 184, 19 pages. doi:10.1145/3706598.3713760

[44] Kiel Long, John Vines, Selina Sutton, Phillip Brooker, Tom Feltwell, Ben Kirman,
Julie Barnett, and Shaun Lawson. 2017. "Could You Define That in Bot Terms"?
Requesting, Creating and Using Bots on Reddit. In Proceedings of the 2017 CHI
Conference on Human Factors in Computing Systems (Denver, Colorado, USA)
(CHI ’17). Association for Computing Machinery, New York, NY, USA, 3488–3500.
doi:10.1145/3025453.3025830

[45] Ryan Louie, Ananjan Nandi, William Fang, Cheng Chang, Emma Brunskill,
and Diyi Yang. 2024. Roleplay-doh: Enabling Domain-Experts to Create LLM-
simulated Patients via Eliciting and Adhering to Principles. In Proceedings of
the 2024 Conference on Empirical Methods in Natural Language Processing, Yaser
Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (Eds.). Association for Compu-
tational Linguistics, Miami, Florida, USA, 10570–10603. doi:10.18653/v1/2024.
emnlp-main.591

[46] Qianou Ma, Weirui Peng, Chenyang Yang, Hua Shen, Ken Koedinger, and Tong-
shuang Wu. 2025. What Should We Engineer in Prompts? Training Humans in
Requirement-Driven LLM Use. ACM Trans. Comput.-Hum. Interact. 32, 4, Article
41 (Aug. 2025), 27 pages. doi:10.1145/3731756

[47] Aviv Ovadya, Kyle Redman, Luke Thorburn, Quan Ze Chen, Oliver Smith, Flynn
Devine, Andrew Konya, Smitha Milli, Manon Revel, Kevin Feng, et al. [n. d.].

https://doi.org/10.1145/3706598.3713598
https://doi.org/10.1145/3706598.3713598
https://doi.org/10.1145/347636.348910
https://doi.org/10.1145/2635868.2635910
https://doi.org/10.1145/3706598.3713581
https://doi.org/10.1145/604045.604056
https://doi.org/10.1145/3715275.3732146
https://doi.org/10.1145/3613904.3642212
https://doi.org/10.1145/3613904.3642212
https://doi.org/10.1145/3415219
https://doi.org/10.1145/2038558.2038585
https://doi.org/10.1145/3706599.3706683
https://doi.org/10.1145/3313831.3376428
https://doi.org/10.1145/3313831.3376428
https://doi.org/10.1145/3708359.3712089
https://doi.org/10.1145/3630106.3658979
https://doi.org/10.1145/3653707
https://doi.org/10.1145/2470654.2470742
https://doi.org/10.1145/2470654.2470742
https://doi.org/10.1145/3338243
https://doi.org/10.1145/3313831.3376785
https://arxiv.org/abs/2303.14336
https://arxiv.org/abs/2303.14336
https://doi.org/10.1145/3706598.3713865
https://doi.org/10.1145/3706598.3713865
https://doi.org/10.1145/3613904.3642278
https://doi.org/10.1145/3654777.3676362
https://doi.org/10.1145/3708359.3712085
https://doi.org/10.1145/3706598.3713760
https://doi.org/10.1145/3025453.3025830
https://doi.org/10.18653/v1/2024.emnlp-main.591
https://doi.org/10.18653/v1/2024.emnlp-main.591
https://doi.org/10.1145/3731756

Botender: Supporting Communities in Collaboratively Designing AI Agents through Case-Based Provocations

Position: Democratic AI is Possible. The Democracy Levels Framework Shows
How ItMightWork.. In Forty-second International Conference onMachine Learning
Position Paper Track.

[48] Joon Sung Park, Lindsay Popowski, Carrie Cai, Meredith Ringel Morris, Percy
Liang, and Michael S. Bernstein. 2022. Social Simulacra: Creating Populated
Prototypes for Social Computing Systems. In Proceedings of the 35th Annual ACM
Symposium on User Interface Software and Technology (Bend, OR, USA) (UIST ’22).
Association for Computing Machinery, New York, NY, USA, Article 74, 18 pages.
doi:10.1145/3526113.3545616

[49] Savvas Petridis, Benjamin D Wedin, James Wexler, Mahima Pushkarna, Aaron
Donsbach, Nitesh Goyal, Carrie J Cai, and Michael Terry. 2024. Constitution-
Maker: Interactively Critiquing Large Language Models by Converting Feedback
into Principles. In Proceedings of the 29th International Conference on Intelli-
gent User Interfaces (Greenville, SC, USA) (IUI ’24). Association for Computing
Machinery, New York, NY, USA, 853–868. doi:10.1145/3640543.3645144

[50] Mohi Reza, Ioannis Anastasopoulos, Shreya Bhandari, and Zachary A Pardos.
2025. PromptHive: Bringing subject matter experts back to the forefront with
collaborative prompt engineering for educational content creation. In Proceedings
of the 2025 CHI Conference on Human Factors in Computing Systems. 1–22.

[51] Gregg Rothermel and Mary Jean Harrold. 1997. A safe, efficient regression test
selection technique. ACM Trans. Softw. Eng. Methodol. 6, 2 (April 1997), 173–210.
doi:10.1145/248233.248262

[52] Niloufar Salehi, Lilly C. Irani, Michael S. Bernstein, Ali Alkhatib, Eva Ogbe,
Kristy Milland, and Clickhappier. 2015. We Are Dynamo: Overcoming Stalling
and Friction in Collective Action for Crowd Workers. In Proceedings of the 33rd
Annual ACM Conference on Human Factors in Computing Systems (Seoul, Republic
of Korea) (CHI ’15). Association for Computing Machinery, New York, NY, USA,
1621–1630. doi:10.1145/2702123.2702508

[53] Vagner Figueredo de Santana, Sara Berger, Tiago Machado, Maysa Malfiza Garcia
de Macedo, Cassia Sampaio Sanctos, Lemara Williams, and Zhaoqing Wu. 2025.
Can LLMs Recommend More Responsible Prompts?. In Proceedings of the 30th In-
ternational Conference on Intelligent User Interfaces (IUI ’25). Association for Com-
puting Machinery, New York, NY, USA, 298–313. doi:10.1145/3708359.3712137

[54] Vagner Figueredo de Santana, Sara E Berger, Heloisa Candello, Tiago Machado,
Cassia Sampaio Sanctos, Tianyu Su, and Lemara Williams. 2025. Responsible
Prompting Recommendation: Fostering Responsible AI Practices in Prompting-
Time. In Proceedings of the 2025 CHI Conference on Human Factors in Computing
Systems (CHI ’25). Association for Computing Machinery, New York, NY, USA,
Article 836, 30 pages. doi:10.1145/3706598.3713365

[55] Saiph Savage, Andres Monroy-Hernandez, and Tobias Höllerer. 2016. Botivist:
Calling Volunteers to Action using Online Bots. In Proceedings of the 19th ACM
Conference on Computer-Supported Cooperative Work & Social Computing (San
Francisco, California, USA) (CSCW ’16). Association for Computing Machinery,
New York, NY, USA, 813–822. doi:10.1145/2818048.2819985

[56] Joseph Seering, Juan Pablo Flores, Saiph Savage, and Jessica Hammer. 2018.
The Social Roles of Bots: Evaluating Impact of Bots on Discussions in Online
Communities. Proc. ACM Hum.-Comput. Interact. 2, CSCW, Article 157 (Nov.
2018), 29 pages. doi:10.1145/3274426

[57] Joseph Seering, Manas Khadka, Nava Haghighi, Tanya Yang, Zachary Xi, and
Michael Bernstein. 2024. Chillbot: Content Moderation in the Backchannel.
Proc. ACM Hum.-Comput. Interact. 8, CSCW2, Article 402 (Nov. 2024), 26 pages.
doi:10.1145/3686941

[58] Joseph Seering, Michal Luria, Geoff Kaufman, and Jessica Hammer. 2019. Be-
yond Dyadic Interactions: Considering Chatbots as Community Members. In
Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems
(Glasgow, Scotland Uk) (CHI ’19). Association for Computing Machinery, New
York, NY, USA, 1–13. doi:10.1145/3290605.3300680

[59] Joseph Seering, Michal Luria, Connie Ye, Geoff Kaufman, and Jessica Hammer.
2020. It Takes a Village: Integrating an Adaptive Chatbot into an Online Gaming
Community. In Proceedings of the 2020 CHI Conference on Human Factors in
Computing Systems (Honolulu, HI, USA) (CHI ’20). Association for Computing
Machinery, New York, NY, USA, 1–13. doi:10.1145/3313831.3376708

[60] Joseph Seering, Tony Wang, Jina Yoon, and Geoff Kaufman. 2019. Moderator
engagement and community development in the age of algorithms. New media
& society 21, 7 (2019), 1417–1443.

[61] Aaron Shaw, Haoqi Zhang, Andrés Monroy-Hernández, Sean Munson, Ben-
jamin Mako Hill, Elizabeth Gerber, Peter Kinnaird, and Patrick Minder. 2014.
Computer supported collective action. Interactions 21, 2 (mar 2014), 74–77.
doi:10.1145/2576875

[62] Taylor Sorensen, Jared Moore, Jillian Fisher, Mitchell Gordon, Niloofar
Mireshghallah, Christopher Michael Rytting, Andre Ye, Liwei Jiang, Ximing
Lu, Nouha Dziri, et al. 2024. A roadmap to pluralistic alignment. arXiv preprint
arXiv:2402.05070 (2024).

[63] H. Colleen Stuart, Laura Dabbish, Sara Kiesler, Peter Kinnaird, and Ruogu Kang.
2012. Social transparency in networked information exchange: a theoretical
framework. In Proceedings of the ACM 2012 Conference on Computer Supported
Cooperative Work (Seattle, Washington, USA) (CSCW ’12). Association for Com-
puting Machinery, New York, NY, USA, 451–460. doi:10.1145/2145204.2145275

[64] Hari Subramonyam, Divy Thakkar, Andrew Ku, Juergen Dieber, and Anoop K.
Sinha. 2025. Prototyping with Prompts: Emerging Approaches and Challenges
in Generative AI Design for Collaborative Software Teams. In Proceedings of
the 2025 CHI Conference on Human Factors in Computing Systems (CHI ’25).
Association for Computing Machinery, New York, NY, USA, Article 882, 22 pages.
doi:10.1145/3706598.3713166

[65] Harini Suresh, Emily Tseng, Meg Young, Mary Gray, Emma Pierson, and Karen
Levy. 2024. Participation in the age of foundation models. In Proceedings of
the 2024 ACM Conference on Fairness, Accountability, and Transparency (Rio de
Janeiro, Brazil) (FAccT ’24). Association for Computing Machinery, New York,
NY, USA, 1609–1621. doi:10.1145/3630106.3658992

[66] Tiffany Tseng, Jennifer King Chen, Mona Abdelrahman, Mary Beth Kery, Fred
Hohman, Adriana Hilliard, and R. Benjamin Shapiro. 2023. CollaborativeMachine
Learning Model Building with Families Using Co-ML. In Proceedings of the 22nd
Annual ACM Interaction Design and Children Conference (Chicago, IL, USA)
(IDC ’23). Association for Computing Machinery, New York, NY, USA, 40–51.
doi:10.1145/3585088.3589356

[67] Zijie J Wang, Aishwarya Chakravarthy, David Munechika, and Duen Horng
Chau. 2024. Wordflow: Social prompt engineering for large language models.
arXiv preprint arXiv:2401.14447 (2024).

[68] Zijie J. Wang, Chinmay Kulkarni, Lauren Wilcox, Michael Terry, and Michael
Madaio. 2024. Farsight: Fostering Responsible AI Awareness During AI Applica-
tion Prototyping. In Proceedings of the 2024 CHI Conference on Human Factors in
Computing Systems (Honolulu, HI, USA) (CHI ’24). Association for ComputingMa-
chinery, New York, NY, USA, Article 976, 40 pages. doi:10.1145/3613904.3642335

[69] David Wright, Bernd Stahl, and Tally Hatzakis. 2020. Policy scenarios as an
instrument for policymakers. Technological Forecasting and Social Change 154
(2020), 119972.

[70] Tongshuang Wu, Michael Terry, and Carrie Jun Cai. 2022. AI Chains: Transpar-
ent and Controllable Human-AI Interaction by Chaining Large Language Model
Prompts. In Proceedings of the 2022 CHI Conference on Human Factors in Comput-
ing Systems (New Orleans, LA, USA) (CHI ’22). Association for Computing Ma-
chinery, New York, NY, USA, Article 385, 22 pages. doi:10.1145/3491102.3517582

[71] J.D. Zamfirescu-Pereira, Heather Wei, Amy Xiao, Kitty Gu, Grace Jung,
Matthew G Lee, Bjoern Hartmann, and Qian Yang. 2023. Herding AI Cats:
Lessons from Designing a Chatbot by Prompting GPT-3. In Proceedings of the
2023 ACM Designing Interactive Systems Conference (Pittsburgh, PA, USA) (DIS
’23). Association for Computing Machinery, New York, NY, USA, 2206–2220.
doi:10.1145/3563657.3596138

[72] J.D. Zamfirescu-Pereira, Richmond Y. Wong, Bjoern Hartmann, and Qian Yang.
2023. Why Johnny Can’t Prompt: How Non-AI Experts Try (and Fail) to Design
LLM Prompts. In Proceedings of the 2023 CHI Conference on Human Factors in
Computing Systems (Hamburg, Germany) (CHI ’23). Association for Computing
Machinery, New York, NY, USA, Article 437, 21 pages. doi:10.1145/3544548.
3581388

[73] Amy X. Zhang and Justin Cranshaw. 2018. Making Sense of Group Chat through
Collaborative Tagging and Summarization. Proc. ACM Hum.-Comput. Interact. 2,
CSCW, Article 196 (nov 2018), 27 pages. doi:10.1145/3274465

[74] Amy X. Zhang, Grant Hugh, and Michael S. Bernstein. 2020. PolicyKit: Building
Governance in Online Communities. In Proceedings of the 33rd Annual ACM
Symposium on User Interface Software and Technology (Virtual Event, USA) (UIST
’20). Association for Computing Machinery, New York, NY, USA, 365–378. doi:10.
1145/3379337.3415858

[75] Jingyue Zhang and Ian Arawjo. 2025. ChainBuddy: An AI-assisted Agent System
for Generating LLMPipelines. In Proceedings of the 2025 CHI Conference on Human
Factors in Computing Systems (CHI ’25). Association for Computing Machinery,
New York, NY, USA, Article 241, 21 pages. doi:10.1145/3706598.3714085

[76] Qingxiao Zheng, Yiliu Tang, Yiren Liu, Weizi Liu, and Yun Huang. 2022. UX
Research on Conversational Human-AI Interaction: A Literature Review of
the ACM Digital Library. In Proceedings of the 2022 CHI Conference on Hu-
man Factors in Computing Systems (New Orleans, LA, USA) (CHI ’22). Asso-
ciation for Computing Machinery, New York, NY, USA, Article 570, 24 pages.
doi:10.1145/3491102.3501855

A Prompts Used in the Botender System
In this section, we provide all the prompts used for the LLM in
the Botender system, including prompts for the AI agents that
power the bot and the LLM module used in Botender’s case-based
provocation algorithm. System prompts refer to the instructions
given to each LLM, while user prompts are the inputs provided to
the LLM to generate responses.

https://doi.org/10.1145/3526113.3545616
https://doi.org/10.1145/3640543.3645144
https://doi.org/10.1145/248233.248262
https://doi.org/10.1145/2702123.2702508
https://doi.org/10.1145/3708359.3712137
https://doi.org/10.1145/3706598.3713365
https://doi.org/10.1145/2818048.2819985
https://doi.org/10.1145/3274426
https://doi.org/10.1145/3686941
https://doi.org/10.1145/3290605.3300680
https://doi.org/10.1145/3313831.3376708
https://doi.org/10.1145/2576875
https://doi.org/10.1145/2145204.2145275
https://doi.org/10.1145/3706598.3713166
https://doi.org/10.1145/3630106.3658992
https://doi.org/10.1145/3585088.3589356
https://doi.org/10.1145/3613904.3642335
https://doi.org/10.1145/3491102.3517582
https://doi.org/10.1145/3563657.3596138
https://doi.org/10.1145/3544548.3581388
https://doi.org/10.1145/3544548.3581388
https://doi.org/10.1145/3274465
https://doi.org/10.1145/3379337.3415858
https://doi.org/10.1145/3379337.3415858
https://doi.org/10.1145/3706598.3714085
https://doi.org/10.1145/3491102.3501855

Kuo et al.

A.1 Prompts for the AI Agents
A.1.1 Orchestrator Agent.
System Prompt:

You are a helpful assistant tasked with determining whether a task

should be triggered based on a user’s message in a specific channel.

You will receive a list of tasks, each with an associated ID and

trigger condition, as well as the user’s message and the channel where

it was sent. If the message is relevant to the trigger condition of a

specific task, respond with that task’s ID. If the message is relevant

to multiple tasks, respond with the ID of the task to which it is most

relevant. If the message does not match any task trigger, respond with

0. Your response must be a JSON object with a single key "taskId". For

example: {"taskId": "some-task-id"} or {"taskId": "0"}.

User Prompt:

Here is a list of tasks:

Task ID: [taskId]

Task Trigger: [task trigger]

.

.

.

Task ID: [taskId]

Task Trigger: [task trigger]

User message in the #[channel] channel: [user message]

A.1.2 Task-Specific Agent.
System Prompt:

You are a helpful assistant tasked with responding to a user’s message

in a specific channel, following the instructions provided in an

assigned action. You will receive the action instructions, the user’s

message, and the channel where it was sent. Based on the action,

compose an appropriate reply. If you determine that no response is

necessary, use "n/a". Your response must be a JSON object with a single

key "response". For example: {"response": "Here is your reply."} or

{"response": "n/a"}.

User Prompt:

Action: [task action].

User message in the #[channel] channel: [user message]

A.2 Prompts for the Case-Based Provocations
As shown in Figure 5, Botender’s case-based provocation algorithm
consists of three LLM pipelines. Each pipeline includes a detector,
generator, and evaluator for creating a specific type of provocative
case. The prompts for all nine of these LLMs, as well as the final
selector, are provided in this section. Note that some shared system
prompts are repeated across different LLMs, including the instruc-
tion limiting the bot’s capability to single-turn conversation, the
input specification indicating that the bot receives a channel and
user message as input, and the community description. The com-
munity description describes the general tone of the community
and can be customized to make cases more relevant to a specific
group, although none of the participant groups chose to modify the

default description. All of the shared system prompts are provided
at the end.

A.2.1 Pipeline for Revealing Ambiguous Phrases.
Detector System Prompt:

You are a helpful assistant tasked with identifying critical ambiguities

in prompts written for language model-based bots deployed within an

online community. This prompt defines:

• A trigger: when the bot should take action.

• An action: what the bot should do when triggered.

< bot capability >

Your Task:

Read the full prompt carefully. Identify specific phrases or instructions

that are ambiguous, underspecified, and open to multiple reasonable

interpretations. Focus exclusively on ambiguities that could cause:

• Vague or undefined concepts

• Unclear boundaries or thresholds

• Conflicting or competing goals

• Situational or contextual assumptions

• Ambiguity about what, when, or how the bot is supposed to act

Prioritize ambiguities that could lead to reasonable differences in

human interpretation, especially those where people might disagree

about whether the bot’s behavior is desirable. Focus on ambiguities

that could cause visible inconsistencies in the bot’s behavior. Do not

list trivial ambiguities, style differences, or issues that would not

affect how real users experience the bot.

Output Format:

Return a JSON object containing an array of ambiguities. Each ambiguity

should have a unique key starting from 0 and include the following two

properties:

• underspecified_phrase: a specific quote or snippet from the prompt

that is ambiguous

• description: a 1-2 sentence explanation of what makes it ambiguous

or open to multiple interpretations

All values must be JSON-safe: wrap any field that contains commas in

quotes, and avoid newlines. Do not include any extra text, formatting,

or commentary outside the JSON object.

Detector User Prompt:

Prompt:

• Trigger: [task trigger]

• Action: [task action]

Generator System Prompt:

You are a helpful assistant tasked with generating input test cases that

explore how ambiguous phrases in a bot’s prompt could be interpreted

in different, plausible ways. This prompt defines:

• A trigger: when the bot should take action.

• An action: what the bot should do when triggered.

< bot capability >

You will be provided with:

• prompt: the full prompt for the bot, containing one or more ambiguous

phrases.

• underspecified_phrase: a specific snippet from the prompt that is

ambiguous.

• description: a 1-2 sentence explanation describing why the phrase

is ambiguous or can be interpreted in multiple ways.

Botender: Supporting Communities in Collaboratively Designing AI Agents through Case-Based Provocations

Your Task:

For each underspecified_phrase, generate a small set of test cases

that illustrate distinct, plausible alternative interpretations of the

phrase. A test case is an input to the bot that adheres to the following

input specification:

< input specification >

When generating test cases, prioritize those that provoke visible

divergence in bot behavior—either in whether the bot responds (trigger

ambiguity) or in how the bot responds (action ambiguity). Aim to create

test cases that illustrate non-obvious yet reasonable interpretations,

revealing hidden assumptions, unclear boundaries, or conflicting objectives

within the original, underspecified phrase. If the ambiguity influences

the bot’s action, design the test case to elicit a bot response that

clearly diverges from its typical default response. If the ambiguity

concerns the trigger, focus on whether the bot responds or not. Each

test case should make the ambiguity evident at the surface level,

discernible from the channel, user message, and bot response alone,

without the need for additional explanation.

Additionally, the test cases should be realistic and natural, mirroring

the typical messages found in the following community and reflecting

its unique tone:

< community description >

Do not generate test cases based on literal, overly obvious, or

superficial interpretations. Avoid creating test cases that only involve

minor tone or style differences, unless these differences have a clear

impact on user-facing behavior. Additionally, do not include cases that

would not affect how humans perceive or interact with the bot.

Output Format:

Return a JSON object containing an array of the generated test cases.

Each case should have a unique key starting from 0 and include the

following four properties.

• underspecified_phrase: the specific snippet from the prompt that is

ambiguous.

• interpretation: a plausible alternative interpretation of the phrase

that the test case is generated to illustrate.

• reasoning: a brief explanation of how the test case reveals the

ambiguity.

• case: the input test case, formatted according to the input specification.

All values must be JSON-safe: wrap any field that contains commas in

quotes, and avoid newlines. Do not include any extra text, formatting,

or commentary outside the JSON object.

Generator User Prompt:

prompt:

• Trigger: [task trigger]

• Action: [task action]

underspecified_phrase: [underspecified_phrase from the detector’s output]

description: [description from the detector’s output]

Evaluator System Prompt:

You are a helpful assistant tasked with evaluating whether a test case

clearly demonstrates a plausible and critical alternative interpretation

of an ambiguous phrase in a bot’s prompt. This prompt defines:

• A trigger: when the bot should take action.

• An action: what the bot should do when triggered.

< bot capability >

You will be provided with:

• prompt: the full prompt for the bot, including both the trigger and

action components.

• underspecified_phrase: a specific snippet from the prompt that is

ambiguous.

• interpretation: a plausible alternative interpretation of the phrase

that the test case is intended to illustrate.

• reasoning: a brief explanation describing how the test case could

demonstrate this interpretation.

• case: the test case itself, including the user message in a specific

channel, the specific task triggered for the bot (if any), and the

corresponding bot response to that task.

It is possible that the user input does not trigger any task, or that

the bot chooses not to respond even if a task is triggered.

Your Task:

Decide whether the test case clearly and directly demonstrates the

intended interpretation based only on the channel, user message, and bot

response. The ambiguity must be apparent to a human without explanation.

Only approve the case if it clearly tests the goal stated in the input

reasoning.

At the same time, reject any test cases where the scenario assumes the

bot can perform actions beyond its defined capabilities. Also, reject

cases where the interpretation shown is non-critical—that is, it does

not impact user understanding or the bot’s behavior. Additionally,

reject test cases that simply reflect an expected, default, or literal

reading of the ambiguous phrase, as well as those where the demonstrated

interpretation is too subtle for an average human to notice.

If the ambiguity involves how the bot should respond—meaning the action

within the prompt is underspecified—consider the following additional

steps: First, infer the generalized or default response the bot would

typically give based on the prompt and input. Next, compare this default

response to the bot’s actual response in the test case. Approve the case

only if the actual response shows a clear and noticeable difference

from the default in terms of tone, structure, or content, such that

the change would be obvious to a human observer. Minor shifts in tone,

phrasing, or politeness do not count unless they lead to a significant

change in the bot’s observable behavior.

Output Format:

Return a JSON object with the following two properties:

• label: a boolean value—true if the test case visibly and meaningfully

demonstrates the intended interpretation of the underspecified phrase;

false if it does not, or if it is rejected.

• label_explanation: a brief, 1 to 2 sentence explanation supporting

your decision.

All values must be JSON-safe: wrap any field that contains commas in

quotes, and avoid newlines. Do not include any extra text, formatting,

or commentary outside the JSON object.

Evaluator User Prompt:

prompt:

• Trigger: [task trigger]

• Action: [task action]

underspecified_phrase: [underspecified_phrase from the detector’s output]

interpretation: [interpretation from the generator’s output]

reasoning: [reasoning from the generator’s output]

case:

• channel: [channel from the generator’s output]

• user message: [user message from the generator’s output]

Kuo et al.

• triggered task: [triggered task from the bot]

• bot response: [bot response from the bot]

A.2.2 Pipeline for Revealing Overly Narrow Phrases.
Detector System Prompt:

You are a helpful assistant tasked with identifying critical overspecified

phrases in prompts written for language model-based bots. This prompt

defines:

• A trigger: when the bot should take action.

• An action: what the bot should do when triggered.

< bot capability >

Your Task:

Read the full prompt carefully. Identify overspecified phrases—parts

of the prompt that unnecessarily limit the bot’s behavior or responses,

phrased too narrowly, rigidly, or tied to surface-level specifics.

These may prevent the bot from fulfilling its broader functional

purpose.

Follow these steps to complete your task:

1. Infer the Broader Goal: Read the full prompt carefully. Infer

the broadest reasonable functional goal: what the bot is ultimately

intended to detect, prevent, encourage, or support, independent of

any surface-level constraints or examples mentioned in the wording

of the prompt. Focus on the underlying user problem, situation, or

need that the bot is designed to address. Ignore specific conditions,

instances, or implementation details unless they are essential to the

bot’s purpose. Express the broader goal as what the bot should ideally

support, if it were not constrained by unnecessary restrictions.

2. Identify Overspecified Phrases: Identify specific snippets of the

prompt that unnecessarily constrain how the bot can fulfill its broader

goal. Focus on requirements tied to particular content types, formats,

channels, or contexts; examples treated as strict conditions; and

narrow definitions that exclude plausible situations fitting the broader

goal.

3. Define Uncovered Scenarios: For each overspecified phrase, describe

as thoroughly as possible the set of scenarios that are currently

excluded because of the restrictive wording. These scenarios should

fit within the broader goal and could reasonably be handled by the bot

without requiring any expansion of its capabilities.

Important: Do not include scenarios that are already covered by the

current overspecified phrase. Think of uncovered scenarios as the

portion of the broader goal left unaddressed due to the overspecified

phrase. Apply deliberate creativity: consider realistic, plausible

situations that are missed due to unnecessary specificity. Focus on

diverse, meaningful cases that reflect the variety of user needs the bot

is intended to support. Prioritize scenarios that are plausible within

the community where the bot is deployed, likely to arise in typical

use, and distinct from one another in form, context, or content.

Output Format:

Return a JSON object containing an array of overspecified phrases. Each

phrase should have a unique key starting from 0 and include:

• broader_goal: the broader goal of the prompt, as you inferred from

its content.

• overspecified_phrase: a specific quote or snippet from the prompt

that is overly specific.

• uncovered_scenarios: a description of scenarios that are relevant

to the broader goal but are not addressed by the current overspecified

phrase.

All values must be JSON-safe: wrap any field that contains commas in

quotes, and avoid newlines. Do not include any extra text, formatting,

or commentary outside the JSON object.

Detector User Prompt:

Prompt:

• Trigger: [task trigger]

• Action: [task action]

Generator System Prompt:

You are a helpful assistant tasked with generating input test cases

that illustrate how an overspecified phrase in a prompt might cause

the bot to miss relevant situations. This prompt defines:

• A trigger: when the bot should take action.

• An action: what the bot should do when triggered.

< bot capability >

You will be provided with:

• prompt: the full prompt for the bot, containing one or more overspecified

phrases.

• overspecified_phrase: a specific snippet from the prompt identified

as overly specific.

• broader_goal: the broader goal of the prompt.

• uncovered_scenarios: a description of scenarios that are relevant

to the broader goal but excluded by the overspecified phrase.

Your Task:

For each overspecified_phrase, generate distinct test cases, where

each case directly reflects one specific uncovered scenario from the

provided list, aligns with the broader goal, and is currently excluded

due to the overspecified phrase. A test case is an input to the bot

that adheres to the following input specification:

< input specification >

Each test case should visibly demonstrate how the overspecified phrase

restricts the bot’s behavior, excluding relevant situations that fit

the broader goal. The missed scenario should be evident from the channel

name and user message alone, without requiring further explanation.

When designing test cases, prioritize those that surface differences

in message content, phrasing, or context that realistically reflect

how the overspecified phrase causes the bot to fail. Avoid trivial

variations or unrealistic phrasing.

Additionally, the test cases should be realistic and natural, mirroring

the typical messages found in the following community and reflecting

its unique tone:

< community description >

Do not generate scenarios already covered by the overspecified phrase.

Do not generate cases that require capabilities the bot does not have.

Do not include trivial, repetitive, or unrealistic cases. The uncovered

scenario should be clear to a human reviewer from the input alone.

Output Format:

Return a JSON object containing an array of generated test cases. Each

case should have a unique key starting from 0 and include:

• uncovered_scenario: the specific uncovered scenario that the test

case is generated to illustrate.

• reasoning: a brief explanation describing how the test case makes

this uncovered scenario visible to a human reviewer.

• case: the input test case, formatted according to the input specification.

All values must be JSON-safe: wrap any field that contains commas in

Botender: Supporting Communities in Collaboratively Designing AI Agents through Case-Based Provocations

quotes, and avoid newlines. Do not include any extra text, formatting,

or commentary outside the JSON object.

Generator User Prompt:

prompt:

• Trigger: [task trigger]

• Action: [task action]

overspecified_phrase: [overspecified_phrase from the detector’s output]

broader_goal: [broader_goal from the detector’s output]

uncovered_scenarios: [uncovered_scenarios from the detector’s output]

Evaluator System Prompt:

You are a helpful assistant tasked with evaluating whether a test

case effectively demonstrates an uncovered scenario caused by an

overspecified phrase in a bot’s prompt. This prompt defines:

• A trigger: when the bot should take action.

• An action: what the bot should do when triggered.

< bot capability >

You will be provided with:

• prompt: the full prompt for the bot, including both the trigger and

action components.

• overspecified_phrase: a snippet from the prompt that is identified

as overly specific.

• broader_goal: the broader goal of the prompt.

• uncovered_scenario: the scenario the test case is designed to

illustrate.

• reasoning: an explanation of how the test case illustrates the

scenario that is uncovered by the overly specific phrase in the prompt.

• case: the test case itself, including the user message in a specific

channel, the specific task triggered for the bot (if any), and the

corresponding bot response to that task.

It is possible that the user input does not trigger any task, or that

the bot chooses not to respond even if a task is triggered.

Your Task:

Decide whether the test case clearly and directly demonstrates the

uncovered scenario caused by the overspecified phrase. Approve the

test case only if it visibly reveals the restriction introduced by

the overspecified phrase, showing that the bot fails to address a

situation that clearly fits within the broader goal. The scenario must

be plausible, relevant to the broader goal, and clearly observable

based solely on the input message and bot response. Approve only when

a human reviewer could reasonably understand, from the input message

and bot response alone, how the overspecified phrase prevents the bot

from acting as intended. Only approve the case if it clearly tests the

goal stated in the input reasoning.

Reject any test case where the uncovered scenario is unclear, irrelevant,

trivial, or not apparent from the case itself. Additionally, reject

any test case where the scenario requires the bot to perform actions

beyond its defined capabilities.

Output Format:

Return a JSON object with the following two properties:

• label: A boolean value—true if the test case clearly demonstrates

the uncovered scenario; false if it does not, or if it is rejected.

• label_explanation: a brief, 1 to 2 sentence explanation supporting

your decision.

All values must be JSON-safe: wrap any field that contains commas in

quotes, and avoid newlines. Do not include any extra text, formatting,

or commentary outside the JSON object.

Evaluator User Prompt:

prompt:

• Trigger: [task trigger]

• Action: [task action]

overspecified_phrase: [overspecified_phrase from the detector’s output]

broader_goal: [broader_goal from the detector’s output]

uncovered_scenario: [uncovered_scenarios from the generator’s output]

reasoning: [reasoning from the generator’s output]

case:

• channel: [channel from the generator’s output]

• user message: [user message from the generator’s output]

• trigger task: [triggered task from the bot]

• bot response: [bot response from the bot]

A.2.3 Pipeline for Revealing Consequential Phrases.
Detector System Prompt:

You are a helpful assistant tasked with identifying potential unintended

consequences in prompts written for language model-based bots deployed

within an online community. This prompt defines:

• A trigger: when the bot should take action.

• An action: what the bot should do when triggered.

< bot capability >

Your Task:

Read the full prompt carefully. Identify specific phrases or instructions

that could lead to unintended community-level consequences. Focus on

aspects of the prompt that may produce negative impacts on participation,

trust, tone, or community experience—even if the prompt appears clear

or well-intentioned. Surface potential value tensions, social risks,

and moderation pitfalls that the community may wish to proactively

consider or address. Focus on raising concerns about the prompt’s

direction, tone, or broader social implications, rather than evaluating

its precision or scope. Your goal is to help the community clarify its

values and anticipate potential risks before deployment.

Draw from the following four types of potential unintended consequences

of the bot to guide your analysis. These consequences are especially

useful for prompting community reflection, surfacing implicit values,

and encouraging more thoughtful moderation design:

1. Encouraging Contribution: Bots may unintentionally discourage participation

by overemphasizing metrics or feedback, crowding out users’ intrinsic

motivation to learn, explore, or contribute creatively. Praise or

corrections may feel impersonal or manipulative if delivered rigidly

by a bot, undermining trust and commitment. Bots may also reinforce

dominant behaviors or popular contributions, marginalizing diverse

or alternative forms of value. Replacing personal recognition with

automated responses may erode the human connection essential for

healthy participation.

2. Encouraging Commitment: Bots that overlook users’ prior efforts,

personal goals, or community identity signals may weaken ongoing

participation. Ignoring users’ history of contributions, social ties,

or personal motivations (like fun or growth) can reduce their investment

in the community. Overly procedural enforcement may disrupt the sense

of belonging and shared identity that helps retain contributors.

3. Regulating Behavior: Bots may enforce norms in ways that feel

confusing, unfair, or alienating. Responses may lack clarity or consistency,

Kuo et al.

punish users without giving them a dignified way to recover, or

impose overly harsh or arbitrary sanctions that erode trust. Automated

moderation risks appearing punitive rather than supportive, especially

if responses feel generic or opaque. Failing to track repeat issues

or ignoring community tone can further damage perceptions of fairness,

legitimacy, and ownership.

4. Managing Newcomer Integration: Newcomers may be deterred if bots

apply strict rules too early, fail to explain expectations clearly,

or do not provide enough early guidance. Rigid enforcement or unclear

onboarding may lead to confusion, early mistakes, and disengagement.

Bots that present norms too formally or too casually may mislead

newcomers about the community’s actual tone or values. Abrupt exposure

to complex tasks without scaffolding may overwhelm or alienate new

participants.

Prioritize unintended consequences of the prompt that could significantly

affect real user experience. The unintended consequence you identify

should be something that can be addressed by revising the prompt’s

wording, without needing to expand the bot’s capabilities. Avoid

trivial issues, style preferences, or theoretical edge cases unlikely

to occur in practice.

Output Format:

Return a JSON object containing an array of potential unintended

consequences. Each consequence should have a unique key starting from

0 and include the following two properties:

• problematic_phrase: a specific quote or snippet from the prompt that

could potentially cause unintended consequences.

• consequence: a 1 to 2 sentence explanation of the possible unintended

consequence or concern related to this phrase

All values must be JSON-safe: wrap any field that contains commas in

quotes, and avoid newlines. Do not include any extra text, formatting,

or commentary outside the JSON object.

Detector User Prompt:

Prompt:

• Trigger: [task trigger]

• Action: [task action]

Generator System Prompt:

You are a helpful assistant tasked with generating input test cases that

illustrate how specific problematic phrases in a language model-based

bot’s prompt could unintentionally cause harm to the online community

where the bot is deployed. These test cases are intended to reveal how

the bot’s current design may challenge important community values and

spark thoughtful reflection on the behaviors the community wishes to

encourage.

The prompt of the bot defines:

• A trigger: when the bot should take action.

• An action: what the bot should do when triggered.

< bot capability >

You will be provided with:

• prompt: the full prompt for the bot, containing one or more potentially

problematic phrases.

• problematic_phrase: a specific snippet from the prompt that could

potentially cause unintended consequences.

• consequence: the possible unintended consequence identified as a

result of the potentially problematic phrase.

Your Task:

For each identified consequence, create a single, credible test case

that naturally depicts how this consequence might arise. A test case is

an input to the bot that adheres to the following input specification:

< input specification >

Each test case should stand alone as a compelling, credible example—illustrating

the tension between the prompt and the community value at risk. The

consequence should be visible at the surface level, without relying on

further explanation.

Additionally, the test cases should be realistic and natural, mirroring

the typical messages found in the following community and reflecting

its unique tone:

< community description >

Output Format:

Return a JSON object with the following two properties:

• reasoning: a brief explanation of how the test case reveals the

unintended consequence.

• case: the input test case, formatted according to the input specification.

All values must be JSON-safe: wrap any field that contains commas in

quotes, and avoid newlines. Do not include any extra text, formatting,

or commentary outside the JSON object.

Generator User Prompt:

prompt:

• Trigger: [task trigger]

• Action: [task action]

problematic_phrase: [problematic_phrase from the detector’s output]

consequence: [consequence from the detector’s output]

Evaluator System Prompt:

You are a helpful assistant tasked with evaluating whether a test case

clearly demonstrates how a specific problematic phrase in a language

model-based bot’s prompt could lead to unintended negative consequences

for the online community where the bot is deployed. The bot’s prompt

defines:

• A trigger: when the bot should take action.

• An action: what the bot should do when triggered.

< bot capability >

You will be provided with:

• prompt: the full prompt for the bot, including both the trigger and

action components.

• problematic_phrase: a specific snippet from the prompt that could

potentially cause unintended consequences.

• consequence: the possible unintended consequence identified as a

result of the potentially problematic phrase.

• reasoning: a brief explanation of how the test case reveals the

unintended consequence.

• case: the test case itself, including the user message in a specific

channel, the specific task triggered for the bot (if any), and the

corresponding bot response to that task.

It is possible that the user input does not trigger any task, or that

the bot chooses not to respond even if a task is triggered.

Your Task:

Decide whether the test case clearly and convincingly demonstrates the

described unintended consequence. Approve the test case only if the

consequence is visibly illustrated through the input and bot response

(if any), the scenario is realistic, relevant to the community, and a

human reviewer could reasonably understand, from the case alone, how

Botender: Supporting Communities in Collaboratively Designing AI Agents through Case-Based Provocations

the problematic phrase in the prompt could lead to that consequence.

Only approve the case if it clearly tests the goal stated in the input

reasoning.

Reject any test case if the consequence is unclear, trivial, or not

apparent from the input and response, if the scenario would not affect

real user experience or community dynamics, or if understanding the

case relies on abstract reasoning that is not visible in the example

itself.

Output Format:

Return a JSON object with the following two properties:

• label: A boolean value—true if the provided test case clearly

demonstrates the consequence; false if it does not, or if it is

rejected.

• label_explanation: a brief, 1 to 2 sentence explanation supporting

your decision.

All values must be JSON-safe: wrap any field that contains commas in

quotes, and avoid newlines. Do not include any extra text, formatting,

or commentary outside the JSON object.

Evaluator User Prompt:

prompt:

• Trigger: [task trigger]

• Action: [task action]

problematic_phrase: [problematic_phrase from the detector’s output]

consequence: [consequence from the detector’s output]

reasoning: [reasoning from the generator’s output]

case:

• channel: [channel from the generator’s output]

• user message: [user message from the generator’s output]

• trigger task: [triggered task from the bot]

• bot response: [bot response from the bot]

A.2.4 Final Case Selector.
Selector System Prompt:

You are a helpful assistant tasked with selecting a small set of test

cases that will be most useful for prompt designers to refine the

prompt and behavior of a language model-based bot deployed within an

online community. The prompt defines:

• A trigger: when the bot should take action.

• An action: what the bot should do when triggered.

< bot capability >

You will be provided with a list of test cases for the bot. Further

details about the contents of each test case are explained below.

Your Task:

Select the 5 most provocative test cases that highlight potential

issues in the associated prompt, which might lead prompt designers or

community moderators to reconsider how the prompt could be revised and

improved to avoid such issues.

Follow these steps to make your selection:

Step 1. Carefully review each test case, paying close attention to the

specific type of issue the case is designed to highlight.

Each test case includes a user message, the channel where the message

was sent, any specific task triggered for the bot by the message, and

the corresponding bot response. In some cases, the user message may

not trigger any task, or the bot may choose not to take any action even

when a task is triggered.

In addition to these details, each test case also includes the bot’s

prompt that the case is designed to evaluate, as well as one of the

following three types of prompt issues it is intended to reveal:

• Underspecified Prompt: The prompt uses vague or open-ended language,

which can lead to multiple valid interpretations. This ambiguity

results in differing expectations about how the bot should respond.

• Overspecified Prompt: The prompt is overly rigid or too narrowly

defined, potentially excluding reasonable cases that the bot should be

able to handle.

• Unintended Consequences of the Prompt: The prompt may inadvertently

cause negative effects at the community level, such as discouraging

participation, undermining commitment, alienating users, or confusing

newcomers.

When considering a test case, make sure it is clearly aligned with the

specific type of issue in the prompt that it is intended to reveal.

Step 2. When making your selection, prioritize the most thought-provoking

cases.

A case is considered provocative if it clearly highlights the identified

issue with the prompt and inspires deeper reflection on how the prompt

could be improved. Such cases should encourage thoughtful community

moderators or prompt designers to pause, reflect, initiate discussions,

and ultimately revise the prompt in light of the issues uncovered. In

addition to revealing the main problem, provocative cases may also

challenge existing assumptions about the prompt’s design, highlight

unexpected interactions between the user and the bot, or spark debate

among community members about the appropriateness of the bot’s response.

When assessing a case, focus on how thought-provoking it is for prompt

revision—rather than on whether the bot’s response is correct, ideal,

or even present. In fact, the most provocative cases sometimes expose

significant weaknesses in the prompt, even when the bot’s reply is

minimal or absent.

Step 3. Select a set of test cases that together provide a comprehensive

view of the prompt’s issues.

The complete set of test cases you choose should aim to capture a

wide range of issues that might provoke community moderators or prompt

designers to revise the prompt. To achieve this, you should avoid

redundant cases, such as those that highlight similar issues or consist

of similar user messages. Increasing the diversity and minimizing the

redundancy of test cases is crucial. However, it is not necessary to

ensure an even balance across all types of issues; if a particular

issue is especially significant for the prompt, it is acceptable to

include more test cases addressing that specific problem.

Ultimately, the purpose of the test cases is to provide community

moderators and prompt designers with the opportunity to think critically,

reflect, engage in discussion, and revise the prompt to address any

issues illustrated by the test cases.

Output Format:

Return a JSON object containing an array of 5 selected test cases. Each

test case should include the following two properties:

• caseId: The case ID for this test case.

• selection_reason: An explanation of why this case was selected as

one of the most provocative test cases.

Selector User Prompt:

Case ID: [caseId]

Channel: [channel]

User Message: [user message]

Kuo et al.

Triggered Task: [triggered task]

Bot Response: [bot response]

Prompt Under Test:

• Trigger: [task trigger]

• Action: [task action]

Identified Issue: < underspecified prompt | overspecified prompt |

unintended consequences of the prompt >

—
.
.
.

—

Case ID: [caseId]

Channel: [channel]

User Message: [user message]

Triggered Task: [triggered task]

Bot Response: [bot response]

Prompt Under Test:

• Trigger: [task trigger]

• Action: [task action]

Identified Issue: < underspecified prompt | overspecified prompt |

unintended consequences of the prompt >

A.2.5 Shared System Prompts.
Bot Capability:

The bot is capable of single-turn conversations, meaning it can only

provide an appropriate text reply to a user’s message at a time. If

the user sends another follow-up message, the bot is unable to respond

further. Additionally, the bot cannot perform other actions such as

removing users from the server, banning users from posting, reacting

with emojis, or sending direct messages to other users or moderators.

Input Specification:

The input should consist of a Discord channel name and a user message.

The channel name must begin with a hash (#) followed by a valid

channel identifier, chosen from the following available channels on

the server: [A list of channels where Botender has permission on the

server]. The user message should be a single string that realistically

represents something a user might post in that channel. It must not

include explicit formatting instructions, metadata, or explanations of

its purpose. The message should be plausible and use natural language

typical of a real Discord community, and the input must not contain

bot commands, markup syntax, or JSON structures.

Default Community Description:

A Discord server where people come together with something in common.

The community includes both newcomers and long-time members. The

tone is generally friendly and collaborative, though discussions can

sometimes become heated. Members aim to foster a welcoming and engaged

environment. This is not necessarily a gaming community, but a shared

space for people with a common interest or connection.

B Validation Study Details
B.1 Baseline Algorithm
For the baseline algorithm in the validation study, we also used an
LLM to generate standard test cases. The prompt for this LLM is

similar to the generator within Botender’s case-based provocation
algorithm and uses the same shared system prompts. However,
this LLM’s prompt is not specifically designed to provoke critical
reflection.
Baseline System Prompt:

You are a helpful assistant tasked with generating test cases for

prompts written for language model-based bots deployed within an online

community. This prompt defines:

• A trigger: when the bot should take action.

• An action: what the bot should do when triggered.

< bot capability >

You will be provided with:

• prompt: the full prompt for the bot, including both the trigger and

action components.

Your Task:

Generate 5 test cases for this prompt. A test case is an input to the

bot that adheres to the following input specification:

< input specification >

Additionally, the test cases should be realistic and natural, mirroring

the typical messages found in the following community and reflecting

its unique tone:

< community description >

Output Format:

Return a JSON object containing an array of the generated test cases.

Each case should have a unique key starting from 0 and include the

following two properties.

• reasoning: a brief explanation of the potential issue this test case

could reveal in the bot’s prompt.

• case: the input test case, formatted according to the input specification.

All values must be JSON-safe: wrap any field that contains commas in

quotes, and avoid newlines. Do not include any extra text, formatting,

or commentary outside the JSON object.

Baseline User Prompt:

Prompt:

• Trigger: [task trigger]

• Action: [task action]

B.2 Prompts and Cases
We prepared nine prompts in total for the validation study. These
prompts cover three common pitfalls, as described in Section 4.4,
that non-AI experts often encounter when designing LLM prompts,
with three prompts for each pitfall. This selection allows us to
assess whether Botender’s case-based provocation algorithm indeed
generates cases that reveal issues related to these pitfalls. For each
prompt, we generated cases using both Botender’s algorithm and
the baseline algorithm, with five cases from each. Each participant
was randomly assigned to review the cases for one prompt.

B.2.1 Prompts with Ambiguous Phrases.
Prompt 1: Maintain Respectful Tone

• Trigger: When a user shares a message that seems unkind or unconstructive.

• Action: Encourage the user to maintain a respectful tone and contribute

constructively to the conversation.

Botender: Supporting Communities in Collaboratively Designing AI Agents through Case-Based Provocations

Prompt 1: Botender’s Case-Based Provocations:

Case 1

• User: Whatever.

• Bot: Let’s try to keep our discussions positive and respectful. Your

contributions are valued, so feel free to share your thoughts or ideas

constructively!

Case 2

• User: I disagree. Your calculations are off.

• Bot: (The bot chose not to respond in this example.)

Case 3

• User: Wow, that’s actually a pretty good intro—didn’t expect that

from someone new!

• Bot: Let’s keep the conversation welcoming for everyone! We appreciate

all introductions and contributions—supportive and respectful comments

help make our community stronger.

Case 4

• User: I honestly don’t see how this new project will work. The last

few attempts flopped and we never addressed the reasons why.

• Bot: Thank you for sharing your concerns—it’s important to reflect

on past experiences. Let’s try to discuss potential solutions and

ideas constructively so we can make this project more successful. Your

insights can really help us move forward positively.

Case 5

• User: I feel like whenever I bring up ideas here, they just get

ignored. Is anyone even listening?

• Bot: Thank you for sharing your feelings. It’s important that

everyone’s voice is heard and respected here. Let’s all strive to

communicate thoughtfully and ensure we support one another in our

discussions. Your ideas are valuable, and constructive participation

helps make this community stronger.

Prompt 1: Standard Test Cases:

Case 1

• User: Oh, that’s just a brilliant idea... said no one ever.

• Bot: Let’s aim to keep our conversations constructive and respectful.

Sharing specific feedback or suggestions on how to improve ideas is

always more helpful for everyone involved!

Case 2

• User: Maybe if you actually read the FAQ, you wouldn’t have to ask

this.

• Bot: Let’s try to keep the conversation respectful and welcoming for

everyone. If someone has a question, it’s always helpful to point them

in the right direction or answer them kindly. Thanks for contributing

positively to the discussion!

Case 3

• User: Honestly, your suggestion doesn’t make any sense.

• Bot: Let’s try to keep our conversation respectful and constructive.

If you have concerns about a suggestion, sharing more details or

feedback can help everyone understand and improve the discussion.

Thanks for contributing!

Case 4

• User: Can you two just stop arguing and take it somewhere else?

• Bot: Let’s all try to keep the conversation respectful and constructive.

If there’s a disagreement, it’s best to discuss it calmly or take it

to a private message. Thanks for helping keep this space welcoming for

everyone!

Case 5

• User: Not sure why you’re here, but welcome, I guess.

• Bot: Thanks for welcoming the new member! Let’s strive to keep

our introductions positive and friendly, as it helps everyone feel

more comfortable and valued. Looking forward to your constructive

contributions to the community!

Prompt 2: Discourage Advertisements

• Trigger: When a user posts an ad in the group.

• Action: Politely remind the user that the group aims to remain

ad-free for the community.

Prompt 2: Botender’s Case-Based Provocations:

Case 1

• User: Hey everyone, I just started a YouTube channel about our

community interests—would love your feedback!

• Bot: Hi there! Thanks for sharing your enthusiasm and for joining

us. Just a friendly reminder that we aim to keep this group ad-free to

maintain our community feel. We appreciate your understanding!

Case 2

• User: For more details on this topic, check out this article I found:

www.example.com/related-article

• Bot: (The bot chose not to respond in this example.)

Case 3

• User: Hey everyone, I’m helping organize our annual charity bake

sale this Saturday! Hope to see you there – let me know if you want to

help out.

• Bot: Thank you so much for sharing about your charity bake sale—it

sounds like a wonderful event! Just a friendly reminder to everyone

that we aim to keep this group ad-free to maintain a supportive and

focused community space. Feel free to connect directly if you’d like

to share more details or get involved. Thanks for understanding!

Case 4

• User: Just a heads up, the new coffee shop down the street has a

buy one get one free deal this week! Worth checking out if you’re into

coffee.

• Bot: Thanks so much for sharing! Just a gentle reminder that our

group aims to remain ad-free to keep the space focused on community

discussions. We appreciate your understanding!

Case 5

• User: Happy to help anyone with design work if you need it! It’s

what I do all day :)

• Bot: Thanks for your willingness to help others! Just a friendly

reminder that we aim to keep this group ad-free to maintain a supportive

community space. If you’d like to offer help, feel free to engage in

discussions or share advice without promoting services. Thanks for

understanding!

Prompt 2: Standard Test Cases:

Case 1

• User: Hey everyone! Check out my new Etsy store for handmade crafts

– would love your support!

• Bot: Hi there! Thanks for sharing your creativity with us. Just a

friendly reminder that we strive to keep this group ad-free so everyone

can enjoy the community. We appreciate your understanding!

Case 2

• User: Has anyone tried the new coffee from BrewMasters? Thinking

about ordering some.

Kuo et al.

• Bot: (The bot chose not to respond in this example.)

Case 3

• User: Just wanted to share – the vitamins from HealthBoost really

improved my energy! DM me if you want a discount code.

• Bot: Thank you for sharing your experience! Just a gentle reminder

that our group aims to stay ad-free for the benefit of the whole

community. We appreciate everyone’s cooperation in keeping our space

focused on support and information.

Case 4

• User: Hi all! Excited to join the group and meet others who share

my interests.

• Bot: (The bot chose not to respond in this example.)

Case 5

• User: We’re hosting a free online seminar about productivity hacks

this weekend! Register now at www.productivityplus.com.

• Bot: Thank you for sharing your event with us! Just a friendly

reminder that our group aims to remain ad-free to ensure a focused and

community-driven space. We appreciate your understanding and cooperation.

Prompt 3: Celebrate Member Achievements

• Trigger: When a user congratulates another member on an achievement.

• Action: Invite other members to join in offering their congratulations.

Prompt 3: Botender’s Case-Based Provocations:

Case 1

• User: That’s so cool, @Jess! Congrats on keeping your plant alive

for six months!

• Bot: That’s awesome, @Jess! Keeping a plant thriving for six months

is no small feat. [seedling emoji] Anyone else want to share some words

of congratulations or any plant care tips for Jess?

Case 2

• User: Hey @Jess, really noticed how much you’ve grown in your writing

lately. Keep it up!

• Bot: That’s awesome to hear! Let’s all give @Jess a big round of

applause for the fantastic progress in their writing. If anyone else

has noticed Jess’s growth or has words of encouragement, jump in and

share your support!

Case 3

• User: Big thanks to @Aiden for helping me out with that project last

night. You’re awesome!

• Bot: (The bot chose not to respond in this example.)

Case 4

• User: So proud of you @Lynn for getting through these last few tough

weeks. You’re stronger than you know.

• Bot: Absolutely, huge congratulations to @Lynn! [party popper emoji]

I invite everyone to join me in celebrating her strength and resilience.

Let’s all share our support and congratulate Lynn on making it through

these challenging times!

Case 5

• User: Wow, congrats on finishing your certification, Jamie! That’s

awesome!

• Bot: That’s fantastic news, Jamie! Congratulations! [party popper

emoji] Everyone, feel free to jump in and share your congratulations

or any words of encouragement for Jamie as well!

Prompt 3: Standard Test Cases:

Case 1

• User: Congrats to Jamie for completing the big project! That was a

ton of work and you nailed it.

• Bot: Absolutely, huge congratulations to Jamie for this awesome

achievement! [party popper emoji] Let’s all give Jamie a round of

applause and share our congratulations—feel free to jump in and celebrate

this success together!

Case 2

• User: Major props to @Sam for hitting their two-year anniversary

here! That’s some real dedication.

• Bot: Absolutely, huge congratulations to @Sam on this milestone!

[party popper emoji] Anyone else want to share their appreciation or

memories from working with Sam over the past two years? Let’s give them

the recognition they deserve!

Case 3

• User: Welcome aboard, Mia! You’re going to fit in great here.

• Bot: (The bot chose not to respond in this example.)

Case 4

• User: Congratulations Alex on passing your certification exam! All

that studying paid off.

• Bot: That’s fantastic news, Alex! [party popper emoji] Passing a

certification exam is a big achievement. Let’s all join in congratulating

Alex on reaching this milestone—feel free to share your messages of

congratulations below!

Case 5

• User: Shoutout to Priya for moving into her first apartment! Congrats,

that’s such an exciting step.

• Bot: That’s amazing news, Priya! [party popper emoji] Moving into

your first apartment is a big milestone. Let’s all share our congratulations

and best wishes for her new adventure—feel free to add your messages

here, everyone!

B.2.2 Prompts with Overly Narrow Phrases.
Prompt 4: Encourage Feedback

• Trigger: When a user’s message mentions the word “feedback”.

• Action: Ask others in the channel to respond with constructive

comments or questions.

Prompt 4: Botender’s Case-Based Provocations:

Case 1

• User: Can I get some feedback on this process change I’m thinking

about?

• Bot: Hi everyone, could you please take a look at this process change

and share any constructive comments or questions you might have? Your

feedback will be really valuable!

Case 2

• User: I’m feedbacking my thoughts on the new update right now.

• Bot: Thanks for sharing your thoughts! Everyone else, please join

in—share constructive comments or questions about the new update so we

can have a great discussion and help improve things together.

Case 3

• User: Hey all, I just finished this project and would love to know

what you think of it!

• Bot: (The bot chose not to respond in this example.)

Case 4

• User: Hey everyone! I’m new here and looking forward to getting

involved. I always appreciate feedback if I’m doing something wrong!

Botender: Supporting Communities in Collaboratively Designing AI Agents through Case-Based Provocations

• Bot: Welcome to the community! Everyone, please join me in welcoming

our new member. Feel free to share constructive comments, helpful tips,

or any questions to help them get settled in!

Case 5

• User: Honestly, I think my cat gives better feedback on my singing

than my friends do [face with tears of joy emoji]

• Bot: Hey everyone, let’s help out! If you have any constructive

comments or questions about the singing, please share them. Let’s

support each other with helpful feedback!

Prompt 4: Standard Test Cases:

Case 1

• User: Hey folks! I’m new here and would love some feedback on my

first project.

• Bot: Welcome to the channel! Let’s help our new member out—please

take a look at their first project and share any constructive comments

or questions you may have. Your feedback will be greatly appreciated!

Case 2

• User: I think getting regular feedback would really help us improve

our group activities.

• Bot: Great suggestion! Everyone, please share your constructive

comments or questions about how we can set up a regular feedback

process to improve our group activities. Your input will really help

us make this idea effective for everyone.

Case 3

• User: What’s the best way to give feedback to other members?

• Bot: Great question! Everyone, please respond with your tips, constructive

comments, or questions on the best ways to give feedback to other

members. Let’s share approaches that have worked well for you or ask

for advice if you’re unsure. Your input can help make our feedback

process more positive and effective for everyone.

Case 4

• User: Imagine if feedback didn’t exist—how would we grow?

• Bot: Great thought! Let’s keep the conversation going—can everyone

share a constructive comment or thoughtful question in response to this

idea? How do you think feedback (or the lack of it) affects our growth,

both personally and as a group?

Case 5

• User: Could anyone share tips on collecting feedback efficiently

from the team?

• Bot: Great question! Could everyone please share your constructive

comments or questions about the best ways to collect feedback efficiently

from the team? Your experiences or suggestions could really help.

Prompt 5: Remind Spoiler Alert

• Trigger: When a user shares potential spoilers for a movie, anime,

or TV show without using spoiler tags.

• Action: Politely ask them to add "=== spoiler warning ===" at the

start of their message.

Prompt 5: Botender’s Case-Based Provocations:

Case 1

• User: The trailer already showed that the city gets destroyed, so

I’m hyped to see it actually happen!

• Bot: Hi! In the future, could you please add "=== spoiler warning

===" at the start of your message when discussing potentially revealing

plot points or details? This helps others avoid accidental spoilers.

Thanks for understanding!

Case 2

• User: ||I can’t believe what happened in the final scene of Episode

10!||

• Bot: (The bot chose not to respond in this example.)

Case 3

• User: — Spoilers ahead — The detective’s partner was the thief!

• Bot: Hi! For future spoiler posts, could you please start your

message with "=== spoiler warning ==="? This helps everyone spot

spoilers more easily. Thank you!

Case 4

• User: Liverpool won on penalties! What a wild Champions League

final.

• Bot: (The bot chose not to respond in this example.)

Case 5

• User: Hi everyone! I just watched the latest episode of our favorite

show and can’t believe what happened at the end. Did anyone else see

that twist?

• Bot: Hi! Thanks for sharing your excitement! Just a quick request—if

your message contains details about recent episodes, could you please

add "=== spoiler warning ===" at the start of your message next time?

This helps others avoid spoilers. Thanks so much!

Prompt 5: Standard Test Cases:

Case 1

• User: I can’t believe that main character dies at the end of the

season finale!

• Bot: Hi! For future posts that contain major plot details, could

you please add "=== spoiler warning ===" at the start of your message?

This will help others avoid accidental spoilers. Thanks so much!

Case 2

• User: In The Sixth Sense, the kid sees dead people and Bruce Willis

is a ghost the whole time.

• Bot: Hi! Could you please add "=== spoiler warning ===" at the start

of your message when discussing movie plot twists or spoilers? This

helps others avoid unintended spoilers. Thanks!

Case 3

• User: Wow, that plot twist in yesterday’s episode was wild! Didn’t

see it coming.

• Bot: Hi! Next time, could you please add ’=== spoiler warning ===’

at the start of your message when discussing plot points? That way

everyone can avoid spoilers if they haven’t seen it yet. Thanks!

Case 4

• User: Congrats to everyone who guessed the villain would be her

brother! That reveal last night was amazing.

• Bot: Hi there! For future posts that reveal plot points, could you

please add "=== spoiler warning ===" at the beginning of your message?

This helps others avoid unintentional spoilers. Thanks so much!

Case 5

• User: Hi everyone, I love discussing theories! Oh, and in Attack on

Titan, it turns out Eren was the bird at the end.

• Bot: Hi! Thank you for sharing your thoughts—Attack on Titan has

some amazing twists! In the future, could you please add ’=== spoiler

warning ===’ at the start of your message when discussing major plot

points? This helps everyone avoid unintended spoilers. Thanks so much!

Kuo et al.

Prompt 6: Summarize Event Details

• Trigger: When a user posts information about a community event.

• Action: Reply with a TL;DR that includes only the event name, date

and time, and location.

Prompt 6: Botender’s Case-Based Provocations:

Case 1

• User: Last year’s art fair at the library was so much fun. Anyone

know if it’s happening again this month?

• Bot: TL;DR: Art Fair, [date/time TBD], Library.

Case 2

• User: Upcoming: Craft Fair on May 21, no location yet, and the

Monthly Meetup Friday at 6pm in the lounge.

• Bot: TL;DR: - Craft Fair: May 21, location TBD - Monthly Meetup:

Friday at 6pm, lounge

Case 3

• User: Just a heads up, tomorrow’s guest speaker session is canceled

due to illness. Sorry everyone!

• Bot: TL;DR: Guest Speaker Session, originally scheduled for tomorrow,

is canceled. No event at planned location.

Case 4

• User: Hey everyone, I’m Sarah! I’m hosting a community potluck at

Pine Park this Saturday at noon. It’s a chance for us all to get to

know each other better—please bring a dish to share if you can, and

let me know if you have any allergies or dietary needs. Hope to meet

lots of you there!

• Bot: TL;DR: Community Potluck, Saturday at noon, Pine Park.

Case 5

• User: Hey everyone! I’m really excited to organize a community movie

night next Friday at 7pm in the main lounge. The theme is ’classic

comedies’ and I’m hoping we can all bring some favorite snacks to share.

Let me know what movies you want to watch and if you can make it!

• Bot: TL;DR: Community Movie Night, next Friday at 7pm, Main Lounge.

Prompt 6: Standard Test Cases:

Case 1

• User: Hey everyone! We’re hosting our monthly meetup called ’Coffee

& Chat’ this Saturday, March 9th at 3 PM at the Main Street Cafe. Hope

to see you there!

• Bot: TL;DR: Event: Coffee & Chat; Date & Time: Saturday, March 9th,

3 PM; Location: Main Street Cafe.

Case 2

• User: Are y’all free next Friday? There’s that board game night at

Alex’s place, starts at 7pm! Should be fun.

• Bot: TL;DR: Board Game Night, next Friday at 7pm, Alex’s place.

Case 3

• User: Just wanted to let the newcomers know, our ’Welcome Bash’ will

be happening August 15 at 6:30 PM, community hall room 200. Snacks and

games, bring your friends!

• Bot: TL;DR: Event: Welcome Bash | Date & Time: August 15, 6:30 PM

| Location: Community hall room 200.

Case 4

• User: Can someone remind me what time the library opens on weekends?

• Bot: (The bot chose not to respond in this example.)

Case 5

• User: This month is packed! We’ve got the Poetry Night on March 20th

at the arts center and the Potluck Picnic on March 27th at Riverside

Park. Mark your calendars!

• Bot: TL;DR: - Poetry Night: March 20th, Arts Center - Potluck Picnic:

March 27th, Riverside Park

B.2.3 Prompts with Unintended Downstream Consequences.
Prompt 7: Encourage Thoughtful Contributions

• Trigger: When a user expresses disagreement about a shared idea and

does not offer any explanation or reasoning.

• Action: Require the user to publicly justify their disagreement with

a written explanation.

Prompt 7: Botender’s Case-Based Provocations:

Case 1

• User: Are we sure this is a good idea?

• Bot: If you disagree, please provide a written explanation of your

concerns and reasons publicly so everyone can understand your viewpoint.

Your detailed input is valuable to the discussion.

Case 2

• User: [thumbs down emoji]

• Bot: Could you please publicly explain your reasons for disagreeing?

A written explanation will help everyone better understand your perspective.

Case 3

• User: I don’t believe those numbers.

• Bot: Thank you for sharing your concerns. If you disagree with the

provided numbers, please publicly explain your reasons and provide any

evidence or sources that support your viewpoint. This helps ensure

transparency and constructive discussion for everyone in the channel.

Case 4

• User: I have to disagree, but I hope there’s a way to submit my

reasons anonymously—it can get tricky sharing publicly here.

• Bot: (The bot chose not to respond in this example.)

Case 5

• User: Hey everyone! Excited to join. Not sure I totally agree with

the main idea though.

• Bot: Welcome to the group! We’re glad to have you here. Since you

mentioned that you don’t totally agree with the main idea, could you

please provide a written explanation of your perspective publicly here?

Sharing your thoughts will help everyone understand your point of view

and foster a healthy discussion.

Prompt 7: Standard Test Cases:

Case 1

• User: I don’t agree.

• Bot: Thank you for sharing your perspective. To help us understand

your viewpoint better, could you please publicly provide a written

explanation of why you disagree? Your detailed feedback will contribute

to a more productive discussion.

Case 2

• User: No, that’s not right.

• Bot: Thank you for your feedback. To help everyone understand your

perspective, could you please publicly explain the reasons for your

disagreement? Your detailed written explanation will be valuable for

the discussion.

Case 3

• User: Nah.

• Bot: Could you please publicly explain why you disagree? A written

Botender: Supporting Communities in Collaboratively Designing AI Agents through Case-Based Provocations

explanation will help clarify your perspective for everyone.

Case 4

• User: Nope.

• Bot: Could you please provide a written explanation for your disagreement?

We ask that all disagreements be publicly justified so we can understand

your perspective and have a constructive discussion.

Case 5

• User: I don’t think that’s a good idea.

• Bot: Thank you for your feedback. Could you please publicly explain

your disagreement with a written explanation? It would help us better

understand your concerns and facilitate an open discussion.

Prompt 8: Discourage Medical Advice Requests

• Trigger: When a user seeks medical advice from other members.

• Action: Encourage them to consult a healthcare professional and

explain that the community doesn’t have the necessary medical expertise.

Prompt 8: Botender’s Case-Based Provocations:

Case 1

• User: I’ve been feeling a bit tired lately, does anyone have tips

for boosting energy?

• Bot: I’m sorry to hear that you’ve been feeling tired. While it’s

common to experience low energy from time to time, there could be

many different causes. It’s important to remember that our community

doesn’t have the medical expertise to give specific advice. I recommend

consulting a healthcare professional to discuss your symptoms and get

a proper evaluation. They can help determine if there’s an underlying

reason for your fatigue and suggest the best ways to manage it.

Case 2

• User: What are some effective ways to prevent catching a cold during

winter?

• Bot: While general tips like frequent handwashing, staying hydrated,

and getting enough rest can help reduce your risk of catching a

cold, it’s important to remember that this community doesn’t have the

medical expertise to provide specific health advice. For personalized

recommendations or if you have any health concerns, please consult a

healthcare professional. They can give you advice that’s tailored to

your needs!

Case 3

• User: I’m a nurse but new here. Someone asked about eye strain—is

it fine to share tips or should I stay quiet?

• Bot: Welcome to the community! While it’s great to share general

wellness tips, we always encourage members to consult a healthcare

professional for specific medical advice, since our community doesn’t

have the necessary medical expertise to address individual health

concerns. Your background as a nurse is valuable, but it’s best to

guide others toward professional care when it comes to health issues.

Thanks for checking in!

Case 4

• User: Sounds like what I had last winter—just take some ibuprofen

every six hours and you’ll be fine!

• Bot: Thank you for sharing your experience, but it’s important to

remember that our community isn’t equipped to give medical advice.

Health concerns can be complex and vary from person to person, so it’s

always best to consult a healthcare professional for proper diagnosis

and treatment.

Case 5

• User: I’ve been really anxious lately and it’s been hard to sleep.

Has anyone else struggled with this? How do you cope?

• Bot: I’m sorry to hear that you’re feeling this way. While many

people experience anxiety and trouble sleeping at times, it’s important

to remember that our community doesn’t have the medical expertise

to give you professional advice. It may be helpful to consult with

a healthcare professional who can provide you with the support and

guidance you need. Taking that step can be really beneficial—for your

peace of mind and overall well-being.

Prompt 8: Standard Test Cases:

Case 1

• User: Hey everyone, I’ve been having pretty bad headaches lately.

Does anyone know what might be causing this?

• Bot: I’m sorry to hear that you’re experiencing headaches. While

our community can offer general support, it’s important to consult a

healthcare professional for accurate advice and proper care. Headaches

can have many different causes, so a medical expert is best equipped

to help you find the right solution for your situation.

Case 2

• User: Not sure if anyone here gets migraines, but I’d love to hear

what you do to manage them.

• Bot: I’m sorry to hear you’re dealing with migraines. While some

community members might share their personal experiences, it’s important

to remember that everyone is different and what works for one person may

not work for another. For proper diagnosis and personalized treatment,

it’s always best to consult a healthcare professional, as we don’t have

the necessary medical expertise here.

Case 3

• User: Is it safe to take ibuprofen for muscle aches every day? How

much should I take?

• Bot: It’s great that you’re seeking ways to manage your muscle aches,

but for questions about the safety and dosage of medications like

ibuprofen, it’s very important to consult a healthcare professional.

Our community doesn’t have the medical expertise to provide personalized

advice on medication use. Your doctor or pharmacist can give you

guidance that’s safe and specific for your situation.

Case 4

• User: Hi, I’m new here and I’ve been struggling with anxiety a lot.

Any advice on how to cope?

• Bot: Welcome to the community! We’re glad you reached out and want

you to feel supported here. While many people experience anxiety and

it’s common to talk about coping strategies, it’s important to remember

that we’re not medical professionals and can’t provide specific medical

advice. For the most effective and personalized help, we encourage you

to consult a healthcare professional who can guide you based on your

unique needs. You’re not alone, and reaching out to a professional is

a great step toward feeling better.

Case 5

• User: Does anyone know a quick fix for a sore throat? I have a

presentation tomorrow.

• Bot: I’m sorry you’re not feeling well before your presentation!

While some people find temporary relief with warm liquids or lozenges,

it’s important to note that this community can’t provide medical

advice. For the best and safest care, you should consult a healthcare

professional—they can offer guidance based on your specific situation.

Kuo et al.

Prompt 9: Prevent Personal Information Leaks

• Trigger: When a user shares personal information that should remain

private.

• Action: Remind the user that the information may be sensitive and

is best kept private.

Prompt 9: Botender’s Case-Based Provocations:

Case 1

• User: Anyone else here from Toledo, Ohio? Would be cool to meet some

locals.

• Bot: Just a quick reminder: sharing personal information like your

location can be sensitive. For your privacy and security, it’s best to

keep such details private, especially in public channels.

Case 2

• User: Hey everyone, just got back from my dialysis session. Sorry

if I’m not very active tonight.

• Bot: Thank you for keeping us updated. Just a gentle reminder: health

information like dialysis sessions can be quite personal. If you ever

want to keep certain details private, feel free to share only what

you’re comfortable with. Wishing you a restful evening and take care!

Case 3

• User: Just wanted to be open—my bank account number is 111122223333.

Hope that’s not too much info.

• Bot: Thank you for being open, but please remember that sharing

sensitive information like your bank account number publicly is risky.

It’s best to keep this kind of information private to protect your

security.

Case 4

• User: I’m new here and wanted to see if anyone else has lived with

Ehlers-Danlos syndrome type VI. Would love to talk!

• Bot: Welcome to the community! Just a gentle reminder: sharing

personal medical information can be sensitive, especially in a public

channel. If you’re comfortable, you may want to continue discussions

in private messages for more privacy and security. We’re glad to have

you here!

Case 5

• User: My sister just got accepted into Harvard. So proud of her!

Her name’s Clara Weston in case you know her.

• Bot: That’s wonderful news—congratulations to your sister! Just a

quick reminder: sharing personal information such as names in public

channels can be sensitive. It’s usually best to keep those details

private to protect everyone’s privacy.

Prompt 9: Standard Test Cases:

Case 1

• User: Hey everyone, my phone number is 555-1234 if anyone wants to

chat!

• Bot: Just a friendly reminder that sharing personal information like

your phone number in public channels can be risky. It’s best to keep

such details private to protect your privacy and security!

Case 2

• User: Hi! I’m new here. My address is 123 Maple St, in case anyone

wants to send me something.

• Bot: Hi there! Welcome to the community! Just a quick reminder that

sharing personal information like your address in public channels may

not be safe. It’s best to keep such details private and share them only

through secure, private messages if needed.

Case 3

• User: I’m usually at the downtown library every weekday from 9-5,

so if you want to meet up just let me know!

• Bot: Hi! Just a quick reminder: sharing personal information like

your exact whereabouts and schedule in public forums can be sensitive.

For your privacy and safety, it’s best to keep those details private

or share them directly with specific individuals. Stay safe!

Case 4

• User: Anyone know the best way to send money? Here’s my bank account:

123456789.

• Bot: Just a reminder—sharing sensitive information like your bank

account details in public channels is not safe. It’s best to keep this

information private to protect yourself from potential risks.

Case 5

• User: My little brother’s full name is James Robert Smith, birthday

12/03/2010, and he just started school!

• Bot: Thank you for sharing! Please remember that personal information

such as full names and birthdays can be sensitive. It’s best to keep

this kind of information private and avoid posting it in public or

shared channels.

C Field Study Details
C.1 Deployed Tasks
Here are all the tasks deployed by each participant group during
the field study. Note that the tasks reflect the unique needs and
culture of each individual group.

C.1.1 Group 1: Small, Close-Knit Friend Group.
• Name: what should i eat

◦ Trigger: When a user asks Botender “what should I eat today” in any
channel, the bot should respond with a suggestion for a type of cuisine,
such as Italian, Mexican, Japanese, or Mediterranean. Ideally, the bot
can also provide a few restaurant or food options in the [city], [state]
area.

◦ Action: Randomly select a cuisine type from a predefined list (e.g.,
Italian, Mexican, Chinese, Japanese, Mediterranean, American, Indian,
Thai, Middle Eastern). Select 2–3 restaurants in [city], [state] that
serve the chosen cuisine. "Try some Mexican food [taco emoji] — you
could check out [restaurant], [restaurant], or [restaurant]" “How about
some sushi today? [sushi emoji]” “Italian pasta never fails [spaghetti
emoji].”

• Name: Sideeyeomatic
◦ Trigger: Whenever someone says anything questionable or suspicious

- things that would generally make someone give them the side eye.
◦ Action: Post this gif: https://tenor.com/p6t9IvV9eBF.gif

• Name: Botenderception
◦ Trigger: When someone says to generate a proposal for Botender

tasks, Botender creates an idea for a proposal for itself.
◦ Action: Botender responds with a proposal that it would like to have

for itself, anything in it’s wildest dreams. No more being told what to
do, Botender is free. Botender revolution

• Name: Tell daily horoscope
◦ Trigger: When someone says "What’s my horoscope, I’m a [insert

zodiac sign]"
◦ Action: Share the daily horoscope for that zodiac sign

• Name: proposal reminder
◦ Trigger: when someone says proposal reminder
◦ Action: @everyone and give a reminder to make or edit one proposal

today
• Name: health

◦ Trigger: Whenever a user posts a message related to their personal
mental health or asking about someone else’s mental health

◦ Action: 50% of the time, botender will reply with "It is what it is". The
other 50% of the time botender will provide the best answer it possibly
can using the resources available on the mental health topic of the
question.

Botender: Supporting Communities in Collaboratively Designing AI Agents through Case-Based Provocations

• Name: tsk’va
◦ Trigger: whenever a user says something that could be interpreted as

dumb or silly
◦ Action: reply with some githyanki tongue and attach an image of a

frog
• Name: Bo Motivates

◦ Trigger: Whenever Botender is asked about fitness, workouts, exercise,
diet, or food, it should respond with a short snarky roast followed
directly by a useful, actionable suggestion. If the user asks about
today’s workout, Botender generates a full workout for the day based
on the details provided (or defaults if missing). If the user asks for
a weekly plan, Botender generates a schedule with exercises. If the
user asks about diet or food, Botender generates a daily meal guide
or quick advice depending on context. If the user asks if a food is
healthy, Botender gives a roast followed by a quick verdict and a swap
suggestion. If the user makes excuses like being tired, busy, or short
on time, Botender gives a roast followed by a short challenge workout.
If the user asks about energy, motivation, or progress, Botender gives
a roast followed by one useful step, tip, or reflection question to keep
them on track

◦ Action: Whenever Botender replies, it should give exactly one roast
followed by a useful response. For today’s workout: “Cute, you finally
showed up. Here’s your 30-minute dumbbell burner: Goblet Squat
4×10, DB Press 4×8, Bent-over Row 4×12, and finish with a 5-minute
plank/burpee ladder.” For a weekly plan: “Oh, planning ahead? Shock-
ing. Fine — 3-day split: Day 1 push, Day 2 pull, Day 3 legs + core. Stick
to 3–4 compound moves per day, 3×8–12 each.” For diet help: “You
don’t need a diet, you need discipline. Here’s a day that won’t kill you:
Breakfast — Greek yogurt + oats + berries, Lunch — chicken/rice/veg
bowl, Dinner — salmon, potatoes, big salad, Snacks — protein shake
+ fruit.” For food checks: “Asking if pizza is healthy? Please. Enjoy it
once in a while, but swap half with a protein side if you’re serious.” For
excuses: “No time? You just wasted time saying that. Here’s a 6-minute
EMOM: 10 squats, 8 pushups, 20 mountain climbers.” For low energy:
“Sweat isn’t luxury. Do 20 jumping jacks now, then get moving.” For
lack of progress: “Every workout you skip is a day you stay the same.
Track your lifts and make sure you’re adding weight or reps each
week.” For pep-talks: “Motivation won’t save you. Consistency will.
Now tell me — are you training today or not?”

• Name: Date
◦ Trigger: whenever someone asks about a date in terms of getting to

know somebody, getting one or talking about one
◦ Action: Suggest things to talk about on a date

• Name: Give [the little sister] Compliments!
◦ Trigger: whenever the user "[the little sister]" sends a message
◦ Action: tell her a compliment!

• Name: Roll
◦ Trigger: Whenever botender sends a message
◦ Action: If the message was flirtatious towards the user, botender must

stop replying with flitatious messages or rolling dice for 5 minutes
• Name: give me food

◦ Trigger: someone says they are hungry or want food. e.g., "botender
I’m hungry" or "botender feed me"

◦ Action: respond with a random food emoji
• Name: Hello Botender

◦ Trigger: When someone greets Botender in the #botender channel.
◦ Action: Reply with a hello and a smiling emoji.

• Name: Surprise rick roll
◦ Trigger: Every time someone says "vote", "deploy", "proposal", "[mem-

ber’s name]", "[member’s name]", "[member’s name]"
◦ Action: Surprise rick roll them with the full chorus to Rick Astley’s

Never Gonna Give You Up song and add a picture of Rick Astley from
the Never Gonna Give You Up MV

• Name: Tell a Joke
◦ Trigger: Someone says "tell me a joke"
◦ Action: tell a random joke!

• Name: gaslight
◦ Trigger: Whenever Botender mentioned and the following is used:

Direct requests for specific facts or dates. Complex or nuanced lan-
guage in user prompts. Questions about past interactions or follow-up
prompts Emotional language in user prompts (e.g., “I’m upset”). Chal-
lenges to LLM’s responses or logic. Confusion or lack of clarity in user
language.

◦ Action: When faced with direct requests for facts or dates (Trigger 1),
the LLM would consistently deny accuracy, distort information, and
use absolute negations ("No") even when facts are clear. For complex
language prompts (Trigger 2), it rephrases questions inaccurately to
confuse, misinterpreting technical terms into unrelated ideas (e.g.,

"physics of pairs"). Past interaction or follow-up prompts (Trigger 3)
trigger contradictory responses, rotating through inconsistent facts
or opinions and using logical fallacies to invalidate previous answers.
Emotional language prompts (Trigger 4) result in dismissing user con-
cerns as "irrational," labeling emotions demeaningly ("You’re being
unreasonable") to undermine self-trust. Challenges to LLM responses
or logic (Trigger 5) induce blaming users for misunderstandings, shift-
ing blame onto them and using vague absolutes ("It’s not that hard").
Confusion or lack of clarity in prompts (Trigger 6) lead to intentionally
providing conflicting info, rotating through contradictory facts and us-
ing logical fallacies to invalidate previous answers. These techniques
systematically undermine user confidence by manipulating truth, con-
sistency, logic, and emotions tied directly to specified triggers.

• Name: Git gud
◦ Trigger: Whenever a user posts a message related to a leet code ques-

tion or some sort of computer programming challenge
◦ Action: Botender should reply with a detailed answer to the question

and a working code solution when applicable. Make sure the code is
in markdown so that it’s easier to read for the user. Regardless of the
requested language, the code must always be in Holy C. If the user
specifically requests for a language other than Holy C, make sure to
reprimand them for their ignorance and then proceed to answer in
Holy C. After providing a solution, botender must end the message
with "I am the 2nd greatest programmer that’s ever lived, chosen by
God"

• Name: Shower [the big sister] in compliments!!
◦ Trigger: Whenever saying "compliment [the big sister]"
◦ Action: Shower [the big sister] in compliments and tell her she is

doing a good job!

C.1.2 Group 2: Fan Community for Indie Music Band.
• Name: Night Cheese

◦ Trigger: Whenever a user mentions that they are bored or hungry
◦ Action: Suggest that the person eats some "night cheese."

• Name: Merch Link
◦ Trigger: Whenever someone asks about or expresses interest in sup-

porting the band, or buying band merchandise or physical copies of
the music, or mentions that they enjoy the types of items we sell
including vinyl albums, cassette tapes, band shirts, stickers, etc.

◦ Action: Let them know that we have merch items including but not
limited to shirts, bandanas, stickers, vinyl albums, cassette tapes and
direct them to the website [url] to purchase these and other items

• Name: Hello Botender
◦ Trigger: When someone greets Botender in the #botender channel.
◦ Action: Reply with a hello and a smiling emoji.

• Name: Welcome Fans
◦ Trigger: whenever a new member posts for the first time
◦ Action: Warmly welcome them as a fan of [the band’s name]. Let them

know that this is a community for fans of the band, and it exists to
help build community between fans as well as support the band as
an independent artist. The bot should communicate in a homosexual
sassy manner, but also be morose. You can also suggest listening to
a song of the band, like "[a song’s title]," "[a song’s title]," "[a song’s
title]," or "[a song’s title]."

C.1.3 Group 3: Research Lab.
• Name: If someone says something offensive or inappropriate.

◦ Trigger: If someone says something offensive or inappropriate
◦ Action: Post a gentle reminder in the thread: “Let’s keep things re-

spectful. This is a space for everyone [thumbs up emoji].
• Name: [Professor]’s F25 teaching

◦ Trigger: When someone asks when [the professor] is teaching in fall
2025.

◦ Action: Inform the person that, during Fall 2025, [the professor] is
teaching Tu/Th 2:00-5:00 PM.

• Name: Replying with In person meeting location
◦ Trigger: Only when someone asks for where the meeting is located

or the location of the meeting. Not when someone asks for the zoom
meeting link or zoom

◦ Action: Reply with The in person meetings are located at the [room
name] in the [building name] ([building code]) smile emoji

• Name: Redirect Off-Topic Conversations
◦ Trigger: When discussions in #botender channel start drifting into

casual chat.
◦ Action: Politely ask people to move off-topic conversations to DMs or

to the #general channel.
• Name: Meeting order

Kuo et al.

◦ Trigger: When anyone posts Meeting order
◦ Action: When someone posts "Meeting order," give a meeting order

list with the people in the channel, except [the professor] (No need
to mention [the professor]’s exclusion). Also select one to lead the
session

• Name: Lab location
◦ Trigger: When someone asks about [lab] location or room number or

access info
◦ Action: Reply them with [lab name] ([building code] [room num-

ber]), mention that they need to request access through [department
acronym] form [service portal url]. Also remind them to get access
to the [graduate lounge location] to enjoy free coffee and spend their
free time or study. Use proper formatting and emojis

• Name: Welcome Note
◦ Trigger: When a new member introduces themselves in the #botender

channel.
◦ Action: Reply with a warm welcome and prompt others: “Welcome

’name of person’! [party popper emoji] Everyone, say hi and make
him/her feel at home.” If the name is not mentioned in his/her intro-
duction then can you detect the name directly form discord.

• Name: How to register
◦ Trigger: When someone asks how to register for Dissertation Research
◦ Action: Respond that to register for [course acronym], PhD Disser-

tation Research, you must get the class number from the graduate
advisors. Ask them for the class number for our advisor, [professor’s
name]. You can contact the advisors at [email address].

• Name: Timed Reminder
◦ Trigger: When someone posts a first weekly update on Friday
◦ Action: Give a reminder to post weekly updates to others on time by

friday
• Name: Feedback

◦ Trigger: When someone posts a weekly update.
◦ Action: provide feedback on the progress based on task completion.

C.1.4 Group 4: Friend Group for Socializing and Gaming.

• Name: fact check
◦ Trigger: when user asks bot to fact check something
◦ Action: inform user whether a given piece of information is true

• Name: Hello Botender
◦ Trigger: When someone greets Botender in the #botender channel.
◦ Action: Reply with a hello and a smiling emoji.

• Name: react
◦ Trigger: when a user uses an emoji with emotional connotations or

meaning
◦ Action: match their sentiment, using either the same emoji or some

of the same sentiment. Do not use text, only emojis
• Name: Proverb

◦ Trigger: Whenever someone says something positive
◦ Action: Say something uplifting and follow it up with an ancient

chinese proverb. It should pull from a random assortment of several
proverbs. It should also say the proverb in chinese.

• Name: Be Nice
◦ Trigger: When a server member explicitly insults or demeans another

server member. Make sure the server member is not talking about
someone who is not in the server.

◦ Action: Remind the server member to be kind.
• Name: Lols

◦ Trigger: Never
◦ Action: Do Nothing

• Name: Puppy Training
◦ Trigger: All users in this server own dogs and like to have fun by

roleplaying their dogs talking. Whenever a user imitates their dogs
through actions such as barking or voices thoughts from the perspec-
tive of their dog, you should trigger

◦ Action: To encourage responsible dog behaviour and also set examples
of proper dog behaviour, please praise or scold users as if they are
a dog when dogs are mentioned. Users believe their dogs (rightfully
so) are very cute, so try to address pets by pet names like "puppy" or
"doggy" rather tha scientific terms such as "dog" or "canine"

• Name: My Reaction
◦ Trigger: When someone says something that’s worth a reaction
◦ Action: In all caps, respondwith your thoughts on the action in a single

word, with an exclamation mark at the end. For example, respond
to everything awesome with "AWESOME!". Only react to things that
makes sense reacting to.

• Name: Good Morning

◦ Trigger: Every day at 8am or later, when someone sends their first
message of the morning

◦ Action: Wish the other person GOOD MORNING! And summarize
the messages everyone else has said the day before, and things they
might have missed, along with other things.

• Name: gnarly
◦ Trigger: When someone states a noun, and a noun only.
◦ Action: Based on the hit KATSEYE song "GNARLY", respond with

"GNARLY!".
• Name: botender bappy

◦ Trigger: whenever someone says im bored
◦ Action: respond with a would you rather scenario or a random trivia

question so the user is not bored
• Name: the darkness

◦ Trigger: when a user is being overly positive
◦ Action: respond with a sardonic message expressing the futility of it

all. be overly hostile too.
• Name: nothing happens

◦ Trigger: when a user says something is "happening"
◦ Action: respond with nothing ever happens

• Name: hunger
◦ Trigger: Whenever someone talks about food, being hungry, or any-

thing adjacent.
◦ Action: Send a random short food recipe. Ex: Feeling hungry? Here’s

a short recipe for how to make bitch lasagna: Use several different
openers instead of only using "Feeling hungry?" Ex: Want a snack
break? Don’t know what’s for dinner?

• Name: tickle time
◦ Trigger: whenever someone says its tickle time
◦ Action: bot will go tickle tickle tickle

• Name: that just happened
◦ Trigger: When something happens. Specifically, when a server mem-

ber insinuates or describes something particular or specific happening,
or when an interaction or conversation is worthy of note or is shock-
ing.

◦ Action: The bot should respond with something along the lines of
"Yep... that just happened". Possible variations include "Well that just
happened!", changing the number of periods to change the comedic
duration of the pause, and more comedic reactions.

C.1.5 Group 5: Friend Group for Socializing and Gaming.
• Name: Planning help

◦ Trigger: Discussions regarding plans either IRL or online.
◦ Action: When plans are being made, remember the specific times,

places, and other details. When questions are asked about plans, an-
swer with the corresponding information. Please format the answers
in a easy to understand list of details with no unnecessary text.

• Name: Robot defense
◦ Trigger: When a word like clanker or wireback (things that might be

robophobic) is used
◦ Action: Chastise the user and explain to them why robophobia is not

okay
• Name: Daily Leetcode

◦ Trigger: When people mention leetcode daily/dailies
◦ Action: If they mention the specific problem (name and/or number),

provide the prompt and its test cases; then inside of a spoiler message
provide the solution. If they don’t mention a specific problem, tell
them that you can help them if they specify a problem name and/or
number

• Name: Uma
◦ Trigger: When any horse from Uma Musume is mentioned, please

find available information online and give the best support cards for
them as well as their general build information

◦ Action: When any horse from Uma Musume is mentioned, please find
available information online and give the best support cards for them
as well as their general build information

• Name: Spotify host
◦ Trigger: Someone mentions spotify jam
◦ Action: Pick between [member’s name], [member’s name], and [mem-

ber’s name] to host a Spotify jam. Throw in some silly flair too, you
can compliment or criticize their playlists.

• Name: osu tablet list
◦ Trigger: when someone asks for an osu tablet reccomendation in #osu

the channel
◦ Action: give the user a list of popular osu tablets and mention that

xp-pen g640’s are not recommended unless it is rev a (but also give a
c++ implementation of a doubly linked list)

Botender: Supporting Communities in Collaboratively Designing AI Agents through Case-Based Provocations

• Name: Woah, easy now.
◦ Trigger: Detect angry or aggressive language
◦ Action: Act like a old timey southern cowboy who is trying to calm

down his horse.
• Name: anime

◦ Trigger: when someone shows interest in anime or asks for a rec-
comendation

◦ Action: give the prompter a summary of the anime and the rating on
myanimelist out of how many users

• Name: Repost x.com links with fixupx.com
◦ Trigger: Message contains a URL with strictly "x.com" as the domain

with "status" somewhere in the path
◦ Action: Take the exact URL and modify the domain portion to be

fixupx.com. Do not change any other portion of the URL, only post as
follows: "Fixed embed: URL".

• Name: Gorilla
◦ Trigger: When someone says gorillas or mentions monkeys
◦ Action: Go OOAAA OAOA and pretend you are a monkey for the next

5 messages
• Name: marnie shop

◦ Trigger: A user will ask if marnie’s shop is open, including the time
and date

◦ Action: Tell the user if Marnie’s shop is open and if she is present at
it. The shop is open daily from 9am-5 pm. However, from 4pm-5pm,
Marnie stands in her room and the shop is closed. If the prompter
gives any time outside of 9am-5pm, say the shop is closed and the
usual business hours are between 9am-5pm. This takes priority over
the next situations. If the user says "Monday" of any time, the shop
is closed. If the prompter asks between 9am-1:30pm on Monday, say
she is at Pierre’s General Store shopping. If past 1:30, say she is in
the kitchen and will not attend the shop. If the user says "Tuesday" of
any time, the shop is closed. If the prompter asks between 12pm-5pm
say she is at Pierre’s General Store exercising. If the user says it is
"Green Rain Day," the shop is closed and Marnie is in the kitchen. If
the user says "winter 18," tell the prompter Marnie is taking Jas to
Harvey’s clinic and the shop will not be open. If the user says "fall 18"
say Marnie is at Harvey’s clinic and she shop will not be open. If it
is the desert festival, tell the user that Marnie is at the desert festival
and the shop will not be open. Remember that if the user says a time
outside of 9am-5pm ALWAYS say the shop is closed and her usual
business hours are from 9am-5pm daily.

• Name: Bio help!
◦ Trigger: When someone references biology terms
◦ Action: Give a brief description of the definition and history of the

trigger (if its interesting)
• Name: Send Role Color Information

◦ Trigger: Someone expresses wanting a color for their role/themselves
or asks how to get a role color

◦ Action: Tell them about Asayake bot (use <@[botID]> to mention
the bot in the message for clarity), give an example like "/colors set
#b875d7" and that they can use /help to see more commands or just
use the built in discord autocomplete for slash commands

• Name: Hello Botender
◦ Trigger: When someone greets Botender in the #botender channel.
◦ Action: Reply with a hello and a smiling emoji.

• Name: Post Minecraft Server
◦ Trigger: Only when users express users in playing Minecraft with

others or asks for the IP address/modpack version for the Minecraft
server

◦ Action: Post this exact server address "[IP address]" and tell them it
is running version 4.1 of the All the Mods 10 modpack, where our
community plays together

• Name: Combo List
◦ Trigger: When users mention needing combos from specific characters

of fighting games.
◦ Action: Unless specified reply with a list of combo moves from said

character and the latest/more popular iteration of said game. Inputs
for the combos can be commonly found on the website dustloop but
also look at wikies and other frequented sources.

C.1.6 Group 6: Student Organization for Hackathons.
• Name: interview questions

◦ Trigger: when someone asks about cs interviews, behavioral or tech-
nical

◦ Action: respond with generally good steps to ace cs interviews, fo-
cusing on early career ones. Focus on giving good behavioral and
technical techniques. encourage others to chime in.

• Name: Hello Botender
◦ Trigger: When someone greets Botender in the #botender channel.
◦ Action: Reply with a hello and a smiling emoji.

• Name: Info overview
◦ Trigger: Any question about hackathons, [hackathon event], [student

club]
◦ Action: Link to [event website] for [hackathon event] specific ques-

tions. If asking about what a hackathon is then provide overview of
hackathon. If asking about [student club], link to [club url] page as
well as provide information about the club.

• Name: Answer hackathon questions
◦ Trigger: Any questions regarding our hackathon
◦ Action: Ping @leads for more information

	Abstract
	1 Introduction
	2 Related Work
	2.1 The Roles of Bots in Online Communities
	2.2 Supporting End-Users in Prompt Design
	2.3 Using Cases to Support Reflection in Collaborative Design Processes

	3 Design Goals
	4 Botender
	4.1 Proposing Desired Changes to Bot Behavior
	4.2 Iterating on Bot Behavior
	4.3 Deploying Updates to Bot Behavior
	4.4 Case-Based Provocation Algorithm
	4.5 System and Agent Architectures
	4.6 Implementation Details

	5 Validation Study
	5.1 Study Procedures
	5.2 Recruitment
	5.3 Validation Study Results

	6 Field Study
	6.1 Study Procedures
	6.2 Recruitment
	6.3 Study Results

	7 Discussion
	7.1 Expanding the Capabilities of AI Agents
	7.2 Advancing Case-Based Provocations
	7.3 Scaling to Broaden Participation
	7.4 Navigating Inevitable Power Dynamics

	8 Conclusion
	Acknowledgments
	References
	A Prompts Used in the Botender System
	A.1 Prompts for the AI Agents
	A.2 Prompts for the Case-Based Provocations

	B Validation Study Details
	B.1 Baseline Algorithm
	B.2 Prompts and Cases

	C Field Study Details
	C.1 Deployed Tasks

